
Quantum electronic transport:
Landauer formula from the Keldysh approach

Notes used in the lectures of the graduate course “Quantum transport theory and non-

equilibrium Green’s functions” at the Universidade Federal Fluminense (Niterói, Brazil) in 2015/1.

This material adapted from Ref. 1.

These notes present a derivation of the Landauer formula2,3 using non-equilibrium Green’s

functions. Here we address the specific problem of ballistic transport model of non-

interaction electrons flowing through a quantum dot.

I. MODEL HAMILTONIAN

We separate the system in two parts, namely the leads (L) and the conductor (C), as

exhibited in Figure 1. The model Hamiltonian reads

H = HL +HC +HLC. (1)

FIG. 1: Schematic view of the conductor attached to the leads p = 1, ..., N . Each lead is attached

to the reservoir µp and contains Np channels.

The lead Hamiltonian reads

HL =
∑
kas

εkasc
†
kasckas, (2)
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where the lead channels are labeled by a = (p, n), where n = 1, · · · , Np specifies a channel

in the lead p = 1, · · · , N . The threshold energy to open the transversal propagation mode p

in the lead n is εas. We assume free motion in the direction along the leads. Hence, εkas =

εas+ h̄2k2/2m∗, where m∗ is the electron effective mass and k is its transversal wave number.

The electron spin is s =↑, ↓ and the c†kas(ckas) are the usual fermionic creation (annihilation)

operators, with {c†kas, ck′a′s′} = δaa′δss′δkk′ . Electrons at the lead p are in thermal equilibrium

with the reservoir (at temperature T ) at which the lead is connected to and characterized

by a chemical potential µp. Alternatively, leads can also be modeled by semi-infinite tight-

binding chains mimicking a continuum4,12 or by a realistic representation of an actual atomic

structure. The later construction is at the heart of molecular electronics, where one models

leads as semi-infinite periodic atomic lattices13–17. In any case, the decomposition in Eq. (1)

only becomes useful when the dynamics in the leads is “simple”, in the sense that one

can define asymptotic propagating modes by which the electrons are transmitted by the

leads between conductor and reservoirs. In actual quantum dots the leads are associated to

quantum point contacts, which are certainly very different from semi-infinite leads. However,

it can be shown that if they are long enough to make the evanescent modes become negligible,

our model is fully justified (see, for instance, Appendix C of Ref. 18).

The conductor Hamiltonian reads

HC =
∑
µν

[HC]µν d
†
µsdνs, (3)

where d†µs(dµs) creates (annihilates) an electron at the µ-th state of an arbitrary basis that

spans the conductor eigenstates. Since we consider HC as bilinear, electron-electron interac-

tions are only taken into account at the mean-field level (such as Hartree-Fock). We shall see

bellow that the bilinear form ofHC simplifies enormously the calculation of the conductance.

Unfortunately, it does not describe charge fluctuation processes and electronic correlations,

excluding Coulomb blockade and Kondo physics. In view of these limitations, it is natural

to inquire whether our model is realistic. The answer, obtained by studying the onset of

strong electronic correlations19–21, is affirmative provided the conductor is well coupled to

several open modes in each lead. Roughly, this implies the linear conductance to be larger

than 2e2/h. Our Hamiltonian HC also excludes inelastic processes. This is a limitation of

our model and not of the NEGF formalism, as reviewed in Ref. 22.

We have chosen not to use a diagonal representation for HC. This allows for a simple
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translation of our results into the scattering matrix language (Section IV A) and, hence,

into the Landauer formula. In a tight-binding picture this choice is rather natural: the basis

states are sites and the off-diagonal matrix elements [HC]µν are given by effective hopping

terms that depend on the geometry of the conductor5 and on the material. More elaborate

approaches, such as the Density Function Theory (DFT)23 used in molecular electronics,

need a further assumption13–16: the Kohn-Sham orbitals have to be identified with single-

particle orbitals of Eq. (3)24. Albeit this seems to be a sensible compromise, such assumption

inherits all characteristics of the Kohn-Sham equations, like the problems to describe the

low-lying excitations (spectral properties) of the conductor.

At this stage our model contains leads in thermal equilibrium with their corresponding

reservoirs and an isolated conductor. Let us now introduce the leads-conductor coupling

term

HLC =
∑
ka,µ,s

[
Vka,µc

†
kasdµs + H.c.

]
. (4)

While in quantum dots the coupling matrix elements V are frequently taken as free model

parameters, in molecular electronics the V ’s are determined by the overlap between conduc-

tor and leads (electrodes) waves functions14,25. In the latter case, to assess the conductance

one needs a treatment that accurately computes the tails of the conductor wave functions

deep inside the spatial region of the leads.

If there is a difference in the chemical potentials µp of the reservoirs, the system is driven

out of equilibrium and a current will flow. When the stationary regime is reached, a self-

consistent electrostatic potential U(r) is built. The potential U(r) is accounted for in HC.

It depends on the applied bias, as well as on the system geometry and material properties.

Whereas close to equilibrium the separation between conductor and leads is rather arbitrary,

as the applied bias increases the leads should correspond to regions where there is a negligible

voltage drop, that is, where U(r)−Ueq(r) becomes constant. Here Ueq(r) is the electrostatic

potential in the absence of external bias.

In what follows, we will show how to compute the conductance by formally writing a

perturbation series in powers of the coupling matrix elements, the interaction terms of our

model, and using the non-equilibrium Green’s functions (NEGF) technique.
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II. THE CURRENT

Let us begin by deriving the current formula for our model. To simplify our discussion,

let us assume that no external magnetic field is present. Hence, within the mean field

approximation the spin plays no role. The current in lead p reads

Ip(t) = −2e

〈
d

dt
Np(t)

〉
(5)

where e is the electron charge, the factor 2 comes from the two spin projections, and 〈· · ·〉

stands for thermal averaging. The electron number operator reads

Np(t) =
Np∑
n=1

∑
k

c†kpn(t)ckpn(t) (6)

notice that a was replaced by (n, p) and the spin index is omitted. The equation-of-motion

d

dt
Np(t) =

i

h̄
[H,Np(t)] (7)

leads immediately to

Ip(t) =
2ie

h̄

∑
nk,µ

[
Vkpn,µ

〈
c†kpn(t)dµ(t)

〉
− H.c.

]
. (8)

Introducing the Keldysh Green’s functions10,11

G<
µ,kpn(t, t′) ≡ i

h̄

〈
c†kpn(t′)dµ(t)

〉
, and G<

kpn,µ(t, t′) ≡ i

h̄

〈
d†µ(t′)ckpn(t)

〉
(9)

one writes

Ip(t) = 4eRe

∑
nk,µ

Vkpn,µG
<
µ,kpn(t, t)

 . (10)

We shall discuss here only stationary transport processes, where neither H nor µp depend

explicitly on time. Hence, all Green’s functions have a single time argument, namely,

G(t, t′)→ G(t− t′).

The standard many-body equilibrium perturbation theory10,11relies on adiabatically

switching on and off the interaction term and taking expectation values of time-ordered pro-

cesses, where the initial and final states are at equilibrium and non-interacting at t→ −∞

and t→ +∞, respectively. This is meaningful because, in equilibrium, the initial and final

states are the same. In contrast for non-equilibrium situations, in general, the system does

not return to its initial thermodynamic equilibrium state as the interactions are switched
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off, and an alternative treatment is required. One of the most successful approaches to

handle such situations is the Keldysh formulation26. The perturbation series is constructed

by considering the following path in time: One formally makes the system evolve from a

well-defined equilibrium state at t → −∞ to the time of interest t = t′, and then make it

evolve from t = t′ back in time to its initial state at t = −∞. The advantage of this scheme

is that, by construction, one can calculate all physical quantities of interest by computing

expectation values with respect a well-known state, in which the system was previously

prepared in the past.

In order to implement this scheme, one must construct the non-equilibrium Green’s func-

tions in a complex-time contour, as illustrated in Fig. 2. Remarkably, the perturbation

expansion of the non-equilibrium Green’s functions has exactly the same structure as the

corresponding equilibrium expansion (at zero temperature)26. As a consequence, the equilib-

rium and non-equilibrium theories are formally identical. For instance, the contour-ordered

Green’s function obeys the same Dyson equation as the equilibrium functions10,26. How-

ever, the complex-time integrations involved in the computation of non-equilibrium Green’s

functions are harder to deal with than the ordinary time integrations in the equilibrium for-

malism. This difficulty is circumvented by replacing contour integrals by real time integrals,

following the so-called Langreth rules, which are presented in Appendix ??.

The Keldysh formalism method allows us to obtain a closed expression for G< in Eq. (10).

The derivation is standard10,27,28. One proceeds in two steps. First solve the equation-of-

motion for the time-ordered Green’s function, and then use the Langreth theorem to arrive

at the final expression.

The main steps are sketched as follows. Let us define the contact time-ordered Green’s

function as

Gµ,kpn(t− t′) = − i
h̄

〈
T
(
dµ(t)c†kpn(t′)

)〉
, (11)

which has the equation-of-motion(
−ih̄ ∂

∂t′
− εkpn

)
Gµ,kpn(t− t′) =

∑
ν

Gµν(t− t′)Vν,kpn, (12)

where

Gµν(t− t′) ≡ −
i

h̄

〈
T
(
dµ(t)d†ν(t

′)
)〉

is the conductor Green’s function.
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Recalling that the Green’s function for the (free) electrons in the leads follows(
−ih̄ ∂

∂t′
− εkpn

)
gkpn(t− t′) = δ(t− t′), (13)

with g diagonal, we write

Gµ,kpn(t− t′) =
∑
ν

∫
dt1Gµν(t− t1)Vν,kpn gkpn(t1 − t′) . (14)

Analytic continuation to the Keldysh contour and the Langreth rules allow us to write

G<
µ,kpn(t− t′) =

∑
ν

∫ +∞

−∞
dt1Vν,kpn

{
Gr
µν(t− t1)g<kpn(t1 − t′) +G<

µν(t− t1)gakpn(t1 − t′)
}

(15)

and

G
a(r)
µ,kpn(t− t′) =

∑
ν

∫ +∞

−∞
dt1Vν,kpnG

a(r)
µν (t− t1)g

a(r)
kpn (t1 − t′), (16)

with g< and ga(r) given by10

g<kpn(t− t′) =
i

h̄
fp(εkpn)e−iεkpn(t−t′)/h̄, (17)

grkpn(t− t′) = − i
h̄
θ(t− t′)e−iεkpn(t−t′)/h̄, (18)

gakpn(t− t′) =
i

h̄
θ(t′ − t)e−iεkpn(t−t′)/h̄, (19)

where fp(ε) = [eβ(ε−µp) + 1]−1 is the Fermi function for the pth lead with chemical potential

µp. For later convenience, we also write µp = µeq − eUp, where Up is the voltage applied on

the pth contact.

Home work 1: Obtain the Langreth rules necessary to arrive at Eq. (15) and (16). Sug-

gestion: Consult Refs. 10,39.

Collecting all results and substituting in Eq. (10), we write the current as

Ip(t) =
4e

h̄
Im

{∑
µν

∑
kn

∫ ∞
−∞

dt′ Vν,kpnVkpn,µe
−iεkpn(t−t′)/h̄ (20)

×
[
fp(εkpn)Gr

µν(t− t′) +G<
µν(t− t′)θ(t− t′)

] }
.

Now the current depends only on the conductor Green’s functions.
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III. CONDUCTOR GREEN’S FUNCTION

We now turn to the calculation of the conductor Green’s functions, namely the retarded

Gr
µν and the lesser G<

µν ones. Let us start by writing the equation-of-motion for the time-

ordered Green’s function

∑
ν′

(
ih̄
∂

∂t
δµν′ − [HC]µν′

)
Gν′ν(t− t′) = δµνδ(t− t′) +

∑
kpn

Vµ,kpnGkpn,ν(t− t′) . (21)

We can proceed as we did for the contact Green’s functionGµ,kpn, that is, transform the above

equation-of-motion into an integral equation in real time, make the analytical continuation

to the Keldysh contour and use the Langreth rules.

Fortunately, there is a simpler way to obtain the retarded and advanced Green’s func-

tions, since they are directly related to the time-ordered one by Fourier transform, namely,

Gr(a)(ε) =
∫∞
−∞ dt exp(iε(±)t/h̄)G(t), with ε± = ε ± i0±, as standard. After Fourier trans-

forming Eq. (21), one obtains Gr(a) in the energy representation, namely,

∑
ν′

(
ε±δµν′ − [HC]µν′

)
G
r(a)
ν′ν (ε) = δµν +

∑
kpn

Vµ,kpnG
r(a)
kpn,ν(ε) . (22)

The contact Green’s function G
r(a)
kpn,ν(ε) is obtained from the Fourier transform of Eq. (16)

and reads

G
r(a)
kpn,µ(ε) = g

r(a)
kpn (ε)

∑
ν

Vkpn,νG
r(a)
ν,µ (ε) . (23)

Inserting G
r(a)
kpn,µ into Eq. (22), we arrive at a closed set of equations, that allows us to write

∑
ν′

[
εδµν′ − [HC]µν′ − Σ

r(a)
µν′ (ε)

]
G
r(a)
ν′ν (ε) = δµν , (24)

where we have introduced the self-energy

Σµν(ε) ≡
∑
kpn

Vµ,kpn gkpn(ε)V ∗ν,kpn , (25)

which gives Σr(a) (or Σ<) by identifying gkpn with g
r(a)
kpn (or g<kpn). Let us replace the sums

in k by integrals over energy. For that purpose we define Vµ,pn(εkpn) ≡ Vµ,kpn and use the

identity29 (ε± − ε)−1 = ∓iπδ(ε− ε) + PV(ε− ε)−1, to write

Σr(a)
µν (ε) = ±iπ

∑
pn

ρpn(ε)Vµ,pn(ε)V ∗ν,pn(ε) + PV
∑
pn

∫ ∞
εpn
dερpn(ε)Vµ,pn(ε)

1

ε− ε
V ∗ν,pn(ε) .
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Here εpn is the threshold energy to open the nth propagating mode in the p lead, ρpn(ε) is

the density of states in this mode, and PV stands for the principal value integral. We model

the leads by long rectangular waveguides, where the coupling matrix elements Vµ,np(ε) are

very smooth function of ε. Hence, except for ε near threshold energies εpn, the principal

value integral gives a negligible contribution to Σr(a)
µν (ε). The self-energy becomes energy

independent and reads

Σr(a)
µν ≈ ±

i

2
Γµν , (26)

with Γµν ≡
∑
p[Γp]µν and

[Γp]µν = 2π
∑
n

ρpnVµ,pn V
∗
ν,pn . (27)

This useful approximation (wide-band approximation) is justified in several situations of

physical interest. For instance, considering energy independent coupling matrix elements

Vµ,pn is usually an excellent approximation to describe electronic transport in quantum dots

at low temperatures, since (as we will see) the conductance is dominated by states close

to the Fermi level. Such an approximation is also frequently used to describe asymmetric

tunneling barriers and resonant-tunneling systems under high bias. The key observation is

that the real part of the self-energy will only renormalize the positions of the poles, while

the imaginary part describes the decay processes or the leakage out of the conductor (see

discussion in Ref. 29). In distinction, when the atomic structure of the contacts is important,

the self-energy Σr(a) depends on ε. In such cases one has to compute the self-energy Σr(a)
µν (ε),

either by decimation technique30 or by other means17.

The final result for Gr(a)
µν is best cast in a matrix form

Gr(a)(ε) =
(
εI−HC ±

i

2
Γ
)−1

(28)

where I is the identity matrix.

We now switch to the calculation of G<. In general, this can be a rather difficult task.

Sometimes, it is possible to avoid this step. For instance, for the Anderson model with the

resonance coupled to single transmission mode leads, Meir and Wingreen27 envisaged a nice

trick that uses current conservation to eliminate G< from Eq. (20). For the multi-resonance

case this scheme requires proportional couplings, i.e., [Γp]µν = λ[Γq]µν , where λ is a constant.

Here p and q label different leads. Unless the system (conductor with leads) has a spatial

point-symmetry that makes it invariant under permutations of p with q, the proportional

coupling is hardly a good approximation for the multi-resonance case.
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For a bilinear model Hamiltonian, as the one considered here, the calculation of G<

becomes rather simple: Since we already have an exact expression for Σµν(ε), G
< follows

directly from the Dyson equation10

G<(ε) = Gr(ε)Σ<(ε)Ga(ε) (29)

where Σ< is obtained from Eq. (25), namely

Σ<
µν(ε) =

N∑
p=1

∑
kn

Vµ,kpn g
<
kpn(ε)V ∗ν,kpn ≡

N∑
p=1

[
Σ<
p (ε)

]
µν

. (30)

Following the same steps used to obtain Eq. (26) we write

Σ<
q (ε) = ifq(ε)Γq. (31)

Home work 2: Obtain Eq. (29). Suggestion: Reproduce the derivation presented in Ref. 10,

namely find the Dyson equation for G and then apply the Langreth rules.

Collecting the above results, we obtain

G<(ε) = i
N∑
q=1

fq(ε)G
r(ε)ΓqG

a(ε) . (32)

The Green’s function G<(ε) can be related to the electronic density, namely, n(r) =

−ih̄
∫
dε/(2π)G<(ε, r). This important relation provides a natural path to calculate the

electrostatic potential U(r) using, for instance, the density functional theory. It is also

straightforward to calculate U(r) self-consistently, as reviewed by Ref. [14].

With these elements, we are now ready to return to Eq. (20) and compute the current.

IV. THE CONDUCTANCE

Let us start transforming the sum over k in Eq. (20) into an integration over energy, like

we have done for the self-energy Σ. We then integrate over t to write

Ip = −2e

h̄

∫ ∞
−∞

dε

2π
ImTr

{
Γp [G<(ε) + fp(ε)G

r(ε)]
}
. (33)

In equilibrium, the chemical potentials at the contact coincide, that is µq = µeq for all q =

1, · · · , N . The fluctuation-dissipation theorem gives G< = −ifeq(ε)ImGr, where feq(ε) =

[eβ(ε−µeq) + 1]−1. Hence, as expected, the current is Ip = 0.
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Inserting Gr from Eq. (28), and G< from Eq. (32), into Eq. (20) we write the current as

Ip =
2e

h

N∑
q=1

∫ ∞
−∞

dε
(
fq(ε)− fp(ε)

)
Tr
[
ΓpG

r(ε)ΓqG
a(ε)

]
, (34)

which is the central result of this review. To the best of our knowledge, an equation similar

to Eq. (34) was first obtained by Caroli and collaborators31 using NEGF to study the current

in a metal-insulator-metal junction. In the context of mesoscopic transport, Eq. (34) was

first derived by Pastawski32. The derivation we present here closely follows the seminal

paper by Meir and Wingreen27, who discuss the limitations of Eq. (34) and show how to go

beyond it in the case of strongly interacting systems.

Let us define the total transmission from terminal q to terminal p at energy ε as

Tpq(ε) = Tr
[
ΓpG

r(ε)ΓqG
a(ε)

]
(35)

to write the surrent as

Ip =
2e

h

∫ ∞
−∞

dε
N∑
q=1

[
Tpq(ε)fq(ε)− Tqp(ε)fp(ε)

]
. (36)

This result holds for both linear and non-linear elastic transport, since the transmission

coefficients Tpq depend on the self-consistent electrostatic potential U(r) that encodes infor-

mation about the applied bias.

Equation (36) is remarkable in many ways. One might ask about the role of the exclusion

principle, since the current depends on
∑
q Tqpfp instead of

∑
q Tqpfp(1− fq), as standard in

a rate equations approach. (In practice, this difference can be noticed when an external

magnetic field is present.) The answer is that the transport is fully coherent and any state

transmitting electrons from p to q has asymptotic components at both leads. However,

electrons flowing from p to q are only in thermal equilibrium with a single reservoir, namely,

to one to which the lead p is attached. For more details on this discussion, as well on the role

of a magnetic field on the lead states, inelastic and non-coherent transport we recommend

the very insightful textbook by Datta5.

Before addressing the linear regime, let us rewrite the current as

Ip = −2e

h

∫ ∞
−∞

dε
N∑
q=1

fq(ε)Apq(ε) with Apq(ε) = Tr
[
ΓpG

r(ε)(Γδpq − Γq)G
a(ε)

]
. (37)

This is a very convenient expression to use for a multi-lead device33. Let us use it to discuss

the linear conductance regime. As long as the bias is small, i.e. the chemical potential
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differences δµ’s do not cause an appreciable change in the Green’s functions Gr(a)(ε), one

can safely linearize the Fermi function in Eq. (37) around the equilibrium chemical potential

µeq and replace Green’s function Gr(a)(ε) by the equilibium ones G
r(a)
0 (ε). One then finally

arrives at the Landauer-Büttiker conductance Gpq,

I linear
p =

N∑
q=1

GpqUq with Gpq =
2e2

h

∫ ∞
−∞

dε

(
−∂feq

∂ε

)
Aeq
pq(ε), (38)

where Up is the voltage at the contact p, and I linear
p is the linear component of Ip. The

superscript in Aeq
pq(ε) indicates that Apq(ε) is calculated using G

r(a)
0 (ε). Notice that Eqs. (37)

and (38) imply that
∑
pGpq = 0 and

∑
q Gpq = 0. In physical terms, the first sum follows

from current conservation, while the second one tells us that the current remains invariant

if we change all voltages {Uq} by the same amount33.

Currently, most experiments deal with two-contact devices. In this case, there is no real

need to introduce the coefficients Apq, since we can write the linear conductance directly as

G =
dI

dU

∣∣∣∣∣
U→0

=
2e2

h

∫ ∞
−∞

dε

(
−∂f
∂ε

)
g(ε), (39)

where

g(ε) = T12(ε) = Tr
[
Γ1G

r
0(ε)Γ2G

a
0(ε)

]
(40)

is the so-called dimensionless conductance.

A. Connection to the scattering matrix

It remains to discuss the connection between the conduction as given by Eq. (38) and

the S-matrix, which is the standard way to cast the Landauer formula. This is in principle

possible for the linear conductance, since the S-matrix encodes all single particle information

about equilibrium scattering processes through the conductor. More specifically the scatter-

ing matrix elements Sab(ε) give the probability amplitude of scattering electrons from the

incoming channel b to the outgoing channel a at energy ε. Recall that the channel indices

label both the propagating mode and the lead, c = (p, n).

Before we proceed, it is important to stress that the Landauer formula can be obtained

directly from a linear response theory, without resorting to the full machinery of NEGF.

This was first done by Fisher and Lee34 in 1981. The importance of this paper is hardly
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overstated, since it appeared at a time when the validity of the Landauer picture was not

fully established. It is not our aim to review the vast literature on the Landauer conductance

formula, but we would like to highlight some references that can help the interested reader. A

brief historical account and the key ideas behind Eq. (42), as well as some of its applications

in connection to experiments are given in Refs. [3,5]. A seminal paper addressing multi-

probe experiments and the role of contacts and reservoirs is Ref. [35]. A nice detailed

derivation of Eq. (42) using the Kubo linear response formalism is presented in Ref. [36]. The

Landauer formula can also be obtained in a compact and elegant way in second quantization,

by assuming that the difference in the chemical potentials does not change the conductor

Hamiltonian37.

For the sake of simplicity, we consider a two-lead configuration. The S-matrix contains

reflection and transmission scattering amplitudes. If there are N1 propagating modes at lead

1 and N2 at lead 2, the S-matrix is conveniently written in a block form

S =

 r t′

t r′

 (41)

of dimension (N1 + N2). Here r (r′) gives the reflection amplitudes for scattering states

going from lead 1 back to 1 (2 back to 2) and t (t′) the transmission amplitudes from 1 to

2 (2 to 1). In the absence of external magnetic fields, time-reversal symmetry is preserved,

the S-matrix is symmetric, and t′ = t†.

The dimensionless conductance is expressed according to the Landauer conductance for-

mula as

g = Tr
(
t t†

)
. (42)

The generalization for a multi-lead geometry is straightforward and can be found in Ref. [18].

Let us go back to our goal, namely connect Eqs. (40) and (42). For that purpose we

rewrite the leads Hamiltonian as

HL =
∑
p,n

∫ ∞
εpn

dε ε c†εpncεpn (43)

where {c†εpn, cε′p′n′} = δ(ε− ε′)δpp′δnn′ . Accordingly, the coupling Hamiltonian becomes

HLC =
∑
pn,µ

∫ ∞
εpn

dε
[
Wεpn,µc

†
εpndµs + H.c.

]
. (44)

Notice that the coupling elements W ’s have a different dimension than the previously in-

troduced V ’s. The merit of introducing the operators c†εpn and cεpn is that they are related
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to asymptotic states |χεpn〉, normalized as 〈χεpn|χε′p′n′〉 = δ(ε− ε′)δpp′δnn′ , standard in res-

onance scattering theory18. In addition, formulating the scattering problem in terms of

asymptotic states |χεpn〉 automatically guarantees flux conservation36,38.

The derivation of the resonance S-matrix can be found in several textbooks18,40. Neglect-

ing direct tunneling between states at different leads41, one writes

S(ε) = I− i2πWGr
0(ε)W†, (45)

where [Gr
0]−1 = ε−HC + iπW †W . By direct inspection of the decay width matrix in Gr one

identifies

Γµν = 2π
∑
c

W ∗
µcWνc = 2π

∑
c

V ∗µcρcVνc, (46)

where the sum runs over all open channels in the leads. The V ’s are defined in Eq. (4).

We now compare Eqs. (41) and (45) to extract the transmission matrix t. Using (Gr)† =

Ga and the cyclic property of the trace, we write

Tr
(
t t†

)
= (4π)2Tr

(
W1G

r
0W

†
2W2G

a
0W

†
1

)
= Tr

[
Γ1G

r
0Γ2G

a
0

]
, (47)

which is the desired result. From the point of view of scattering theory, Eq. (47) is quite

trivial to obtian if one starts from Eq. (45).

V. CONCLUSION

The presented material covers the essential steps to obtain the linear conductance of a

conductor using non-equilibrium Green’s functions. We focused our discussion on technical

aspects. The literature on applications and physical consequences of the Landauer formula

is vast. Some of this material is nicely discussed by Refs. [3–5,42].

We stress that the mean-field approximation (bilinear form of Eq. (3) is an essential

element for our derivation. It allows one to close the equations-of-motion and hence to obtain

all Green’s functions necessary to calculate the conductance. Therefore the fascinating

physics related to Coulomb blockade and electronic correlations is entirely left out of this

paper. The NEGF approach can certainly deal with these issues, but the approximation

schemes involved are different than those discussed here27.

We considered Eq. (34) in linear response to obtain the Landauer conductance. By

supplying a self-consistent scheme to determine how an applied bias modifies the electrostatic

13



potential in the conductor Hamiltonian HC , non-linear quantum elastic transport processes

can be addressed. So far theory and experiments do not show quantitative agreement. This

is a very active line of research in mesoscopic physics and in molecular electronics.

The purpose of these notes is to provide a quick introduction to NEGF in transport,

gathering some of the basic literature and working out a soluble model from scratch to

the end. We hope it will be useful for beginners and also serve as a quick reference for

partitioners.

Appendix A: Equations-of-motion

The method of equations-of-motion (EOM) is one of the standard approaches to generate

a perturbation series for the double-time Green’s functions appearing in Section II. The

method became popular after Zubarev’s pioneer work43. In this Appendix we review its

main elements and present Zubarev’s notation, which is still often used.

Let consider two operators A(t) and B(t′) in the Heisenberg picture and define the Green’s

function

Gr(a)(t, t′) ≡ 〈〈A(t);B(t′)〉〉r(a) = ∓ i
h̄
θ(±(t− t′))〈[A(t);B(t′)]η〉 (A1)

G(t, t′) ≡ 〈〈A(t);B(t′)〉〉 = − i
h̄
〈T [A(t);B(t′)]η〉 (A2)

where superscripts r and a denote retarded and advanced Green’s functions, respectively.

Here, [A(t);B(t′)]η ≡ A(t)B(t′) − ηB(t′)A(t) gives a commutator (η = 1) for bosonic oper-

ators and an anticommutator (η = −1) for fermionic ones. 〈· · ·〉 indicates an average over

the grand canonical ensemble

〈· · ·〉 =
1

Z
Tr

[
e−β(H−µN) · · ·

]
, (A3)

where Z = Tr[e−β(H−µN)] the partition function, N is the number operator, µ the chemical

potential, and β = 1/kT .

Differentiating the time-ordered Green’s function with respect to t leads to

ih̄
d

dt
〈〈A(t);B(t′)〉〉 = δ(t− t′)〈[A(t), B(t′)]η〉+ 〈〈[A(t), H];B(t′)〉〉. (A4)

The explicit computation of [A(t), H] for the considered model Hamiltonian generates

Green’s functions other then 〈〈A(t);B(t′)〉〉 in Eq. (A4). Every one of these “new” Green’s

14



functions has its own corresponding equation-of-motion. As a result, one ends up with a set

of coupled equations. Unfortunately, in general this set is infinite and one needs to recur

to approximation schemes to solve for 〈〈A(t);B(t′)〉〉. Note that 〈〈A(t);B(t′)〉〉r(a) are also

solutions of Eq. (A4), but with different boundary conditions.

The problem simplifies for stationary processes. The system is invariant under time

translation and the Green’s functions depend only on time differences t− t′. It is convenient

to Fourier transform the Green’s functions and introduce

〈〈A;B〉〉ε =
∫ ∞
−∞

d(t− t′)〈〈A(t− t′);B(0)〉〉eiε(t−t′)/h̄ . (A5)

The integral in Eq. (A5) converges if Im(ε) > 0 (Im(ε) < 0)) for retarded (advanced) Green’s

functions, that means that it is analytic in the upper (lower) complex plane.

The Fourier transform of Eq. (A4) renders

ε〈〈A;B〉〉ε = 〈[A,B]η〉ε + 〈〈[A,H];B〉〉ε, (A6)

which is algebraic, putting in evidence the advantage of working with the energy represen-

tation for stationary processes.

To keep the presentation of Section II general, we have used the time-representation to

generate the Green’s functions equations-of-motion. The Fourier transform was taken only

as the last step. By proceeding that way, it was helpful to have always ready the EOMs for

the operators dµ and cknp, namely

ih̄ḋµ =
∑
ν

[HC ]µνdν +
∑
knp

Vµ,knpcknp (A7)

ih̄ċknp = εknpcknp +
∑
µ

V ∗µ,knpdµ . (A8)
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FIG. 2: Schematic view of the conductor attached to the leads p = 1, ..., N . Each lead is attached

to the reservoir µp and contains Np channels.

FIG. 3: Keldysh contour to calculate contour-ordered Green’s functions.
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