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This work proposes an approach to study transport properties of highly correlated local structures. The
method, dubbed the logarithmic discretization embedded cluster approximation �LDECA�, consists of diago-
nalizing a finite cluster containing the many-body terms of the Hamiltonian and embedding it into the rest of
the system, combined with Wilson’s idea of a logarithmic discretization of the representation of the Hamil-
tonian. The physics associated with both one embedded dot and a double-dot side coupled to leads is discussed
in detail. In the former case, the results perfectly agree with Bethe ansatz data, while in the latter, the physics
obtained is framed in the conceptual background of a two-stage Kondo problem. A many-body formalism
provides a solid theoretical foundation to the method. We argue that LDECA is well suited to study compli-
cated problems such as transport through molecules or quantum dot structures with complex ground states.
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I. INTRODUCTION

The study of nanostructures has been motivated, on the
one hand, by the potential applications in molecular electron-
ics devices1 or in quantum computing2 and, on the other
hand, by the search for a more profound understanding of
fundamental many-body physics such as the Kondo effect.
Experimentally, not only the existence of the Kondo effect in
quantum dots3 or single-molecule transistors4 has been estab-
lished, but it has also been demonstrated that nanostructures
can be designed to produce more exotic phases such as mul-
tichannel physics and thus, non-Fermi-liquid behavior.5 On
the theoretical side, while the single-impurity case is well
understood by means of firmly established analytical6 and
numerical methods, such as the numerical renormalization
group technique �NRG�,7 the search for unconventional ef-
fects, nonequilibrium behavior, and the need to model com-
plex real structures, such as molecules or multidot geom-
etries, has triggered the development of alternative
methods.8–13 For instance, the procedure of exactly diagonal-
izing a finite cluster containing the many-body terms and
embedding it into the rest of the system, the embedded clus-
ter approximation �ECA�, has satisfactorily been used to
study transport in nanoscopic structures in the last few
years.10–13 Ideas similar to the embedded-cluster method
have been applied to the metal-insulator transition of the
Hubbard model.14–16

Incorporating ideas from the density matrix renormaliza-
tion group method �DMRG�17 into NRG and vice versa has
also resulted in substantial improvements in, e.g., the calcu-
lation of dynamical properties18 or time-evolution schemes,19

which now allows one to address problems previously out of
reach for either method. In the same spirit, it is the objective
of this paper to present the logarithmic discretization embed-
ded cluster approximation �LDECA� approach to study
highly correlated electrons in nanoscale systems, combining
ECA with Wilson’s idea of a logarithmic discretization of the
conduction band.7 As one of our main results, we utilize
many-body arguments to provide a solid theoretical justifica-
tion of this formalism. Although the ECA method, due to the
embedding process, is designed to analyze the infinite sys-
tem, it produces results that depend on the cluster’s size,
which, in some cases, has led to controversial results.20,21

LDECA not only successfully reduces these finite-size ef-
fects, but, more importantly, it also optimizes the description
of the system in the vicinity of the Fermi level, allowing for
the analysis of lower energy scales than accessible to ECA.
To demonstrate the potential of the method, we focus on

the physics of the Kondo effect in a single dot, where we find
excellent agreement with exact Bethe ansatz �BA� results. As
there is a timely interest in more involved versions of Kondo
physics, such as multichannel situations,5 SU�4�,22,23 as well
as two-stage Kondo �TSK� effects,24–29 we further apply
LDECA to study a double-dot structure side connected to
leads. This system, with a subtle TSK ground state similar to
the one studied in Ref. 26, is an important testbed for our
approach. Our results are encouraging, and we thus envision
the successful future application of LDECA to more in-
volved systems such as molecules adsorbed at metallic
surfaces4,30 or dot structures with subtle ground states.5

The plan of the paper is as follows. We first provide a
discussion of the theoretical foundation of the method in
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terms of diagrammatic perturbation theory in Sec. II. For the
sake of a clear presentation, we choose to provide a peda-
gogical account of the theory, therefore the details will be
given in the Appendix �Appendix A�. Our results for the two
systems, one embedded dot and a two-dot model, are cov-
ered in Secs. III and IV, respectively. For both models, we
discuss the local density of states and the conductance as a
function of gate potential. We close with a summary in Sec.
V.

II. THE “LOGARITHMIC DISCRETIZATION EMBEDDED
CLUSTER APPROXIMATION” (LDECA)

Similarly to the ECAmethod, LDECA is supposed to treat
localized impurity systems that consist of a region with
many-body interactions weakly coupled to noninteracting
conduction bands. The approach is based on the idea that the
many-body effects of the impurities are local in character.
With this in mind, we proceed in three steps: first, out of the
complete system, one isolates a cluster with L sites that con-
sists of the impurities plus their N nearest neighboring sites
in the tight-binding lattice �thus, L=N+1, in the case of a
single impurity�. In this cluster is where most of the many-
body effects are expected to be confined. In a second step the
cluster’s Green function is computed with exact diagonaliza-
tion, which then, in a last step, is embedded into the rest of
the tight-binding lattice.10–13,20,23,31–35 The precise meaning
of the embedding step is described below.
The theoretical foundation of the method is outlined using

the Anderson single-impurity Hamiltonian describing a dot
connected to a semi-infinite lead.36 The total Hamiltonian
reads

HT = Vg�
�

n0� + HMB + t��
�

�c0�
† c1� + c1�

† c0�� + Hband,

�1�

where

HMB = U/2�
�

n0�n0�̄, �2�

and

Hband = �
i=1�

�

ti�ci�
† ci+1� + ci+1�

† ci�� . �3�

The first two terms of HT represent the impurity, which has a
diagonal energy, the gate potential Vg, and a Coulomb repul-
sion U in the Hamiltonian HMB. The third term is the hybrid-
ization of the impurity with the band and finally, Hband rep-
resents the continuous spectrum, in this case modeled by a
semi-infinite noninteracting chain. ci�

† is a fermion creation
operator acting on site i, with a spin index �= ↑↓. ni�
=ci�

† ci� is the particle density operator. t� and ti are the hop-
ping matrix elements between the dot and the leads and in
the leads, respectively. A tight-binding band with a semiel-
liptical density of states is obtained with the choice of ti=1.
This problem can be treated within the framework of

quantum perturbation theory. The standard many-body

perturbation-theory formulation generally considers the ki-
netic energy as the unperturbed Hamiltonian and the many-
body terms as the perturbation. This permits the use of
Wick’s theorem to formulate a diagrammatic expansion for
the propagators of the system. In our case, however, we
adopt an opposite point of view. The unperturbed Hamil-
tonian consists of two parts, the isolated cluster, which in-
cludes the impurity and its neighborhood, and the rest of the
system, as represented by the two dashed boxes in Fig. 1�a�.
The kinetic energy associated to the connection of these two
subsystems is now considered to be the perturbation. This
seems to be an appropriate starting point to describe a system
where the many-body interactions are local, so that the clus-
ter may contain most of the relevant physics we wish to

Many body problem −
solved exactly for T=0
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one body problem
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FIG. 1. �Color online� �a� Schematic description of the steps
needed in the implementation of the ECA and LDECA methods for
the particular case of one quantum dot coupled to a conduction
band. The system is separated into two parts: the first one contains
the many-body terms and the first few neighboring sites in the lead.
This forms the cluster to be exactly diagonalized, with L=N+1
sites. The second part is the rest of the lead, a semi-infinite tight-
binding chain. A crucial step, which allows the simulation of Kondo
physics, is the embedding of the cluster into the remaining part of
the system. This step is performed through a Dyson equation, which
amounts to a summation of an infinite family of Feynman diagrams
arising from perturbation theory. �b� Diagrammatic expansion asso-
ciated to the Dyson equation. The dressed propagators �in green,
darkly shaded�, which reestablish the artificially broken connection
between sites N and N+1 �through a hopping term V�, are calcu-
lated as a function of the bare propagators �gray, lightly shaded�.
Note that the equation for the dressed propagator N+1 , j does not
have an independent bare term, since the bare propagator N+1 , j is
zero.
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describe. However, one faces several difficulties in a theory
of this kind. The most important one is the fact that, in this
case, Wick’s theorem is not valid and, as a consequence, it
cannot be used to develop the diagrammatic expansion.
However, perturbation theory provides us with a way of pro-
posing a locator-propagator diagrammatic expansion and es-
tablishing a criterion to sum up the most important families
of diagrams �for details, see Appendix A�.
Therefore, following the strategy outlined above, the un-

perturbed Hamiltonian H0 is given by

H0 = Hcluster + Hrest, �4�

where

Hcluster = Vg�
�

n0� + HMB �5�

+ t��
�

c0�
† c1� + �

i=1�

N−1

ti�ci�
† ci+1� + H.c.� , �6�

and

Hrest = �
i=N+1�

�

ti�ci�
† ci+1� + H.c.� . �7�

Figure 1�a� schematically represents the two parts of the
system. Note that one of the internal connections of the lead,
represented by a red line, labeled with a V= tN in the figure,
is artificially broken by this procedure and the two parts of
the unperturbed Hamiltonian, Hcluster and Hrest, can be solved
exactly. The ground state of Hcluster with N sites of the lead
plus the impurity is obtained by using the Lanczos method.37

In addition, using a continued fraction scheme, the cluster
Green functions at zero temperature are then evaluated. The
Green functions for Hrest are calculated exactly since it con-
stitutes a one-body problem.
To restore the artificially broken connection between sites

N and N+1, the interaction between the cluster and the rest
of the lead,

Hp = V�
�

�cN�
† cN+1� + H.c.� , �8�

is taken as the perturbation in the many-body diagrammatic
expansion for the Green functions. This step represents the
embedding of the cluster into the rest of the system.
For the sake of clarity, we restrict the discussion to the

local diagonal Green function at the impurity site, while it is
straightforward to calculate a nondiagonal Green function at
two arbitrary sites i and j following the same prescriptions.
To obtain the causal Green functions we follow the standard
framework of an expansion in terms of Feynman diagrams.38

The causal Green function for the impurity site can be ob-
tained from

G00,��t − t�� =
�T�c0��t�c0�

† �t��S�����0
�S����0

, �9�

where, as usual, S��� is the evolution operator and T is the
time order operator. The mean values are calculated in the
ground state of the unperturbed Hamiltonian H0.

The evolution operator S��� is expanded in increasing
orders of Hp, which, when replaced in Eq. �9�, gives rise to a
perturbation series for the Green function.
The Green function of the system at the impurity, as dis-

cussed in the Appendix, can be written using a general
Dyson equation, as schematically shown in Fig. 1�b�:

G00,���� = G00,�
�0� ��� +�

i

G0i,�
�0� ����i

����Gi0,���� , �10�

where i is restricted to be either 0 or N, � denotes frequency,
and the self-energy �i

���� is defined as

�i
���� = �N

�����iN + �0
�����i0. �11�

While �N
���� is a simple self-energy, �0

���� represents an
infinite expansion �see Eq. �A19� in the Appendix�. It can
only be calculated approximately, although this can be done
in a systematic way by including terms in the expansion up
to a certain order in U. Diagrams with a similar topological
structure appear in the calculation of the one-particle Green
function for the Hubbard or Anderson impurity Hamiltonians
treated in the thermodynamic limit.39 In addition, in Ref. 16,
a diagrammatic expansion for an interacting lattice in the
strong-coupling limit was used in order to include effects of
long-range interactions beyond the exact diagonalization of a
finite cluster.
The key approximation of LDECA is guided by a com-

parison of the two contributions to the self-energy given in
Eq. �11�. While �0

� strongly depends on the size of the cluster
through the nondiagonal Green function �G0N,�

�0� ����2, �N
�

does not. This fact can be of great help in establishing a
hierarchy between these two contributions to the self-energy.
In order to achieve this, the applicability of this expansion is
restricted to the vicinity of the Fermi energy, where we know
the physics of the Kondo regime is contained. Following
Wilson’s logarithmic discretization of the lead’s density of
states,7 the Hamiltonian is rewritten by adopting hopping el-
ements that depend on the site index i:

ti =
�1 + �−1�
2��i−1�/2 t , �12�

where ��1 is a constant, i	1 �i=0 being the position of the
impurity�, and we take t=1 as the unit of energy. Note that in
the limit of �→1, the above expression for ti describes a
semielliptical band, rather than the flat band commonly used
in standard NRG calculations; however, close to the Fermi
energy the two bands have the same low-energy physics. It is
worth noting here that the above discussion applies to both
ECA and LDECA, with the exception that in ECA � is taken
to be 1, implying that the band is not discretized.
The implications of this logarithmic discretization with

respect to the contribution of the Hilbert-space states are
twofold: �i� near the dot, states of all energies are taken into
account; �ii� of the states far from the dot, only those near the
Fermi level are considered, while high energy ones are
neglected.40 Although by this procedure high-energy scales
are not well treated, it permits to accurately describe much
smaller energy scales than it is possible with �=1, for the
same cluster size. This procedure is justified if the physics of
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the problem depends only on states with energy close to the
Fermi level, as it is the case in the Kondo effect, discussed in
this paper.
As discussed in the Appendix, around Eq. �A26�, from

Eqs. �A18� and �A19� one realizes that �N
� 	�−�N−1� and �0

�

	 f�N��−�N−1�N/2, such that

�0
����

�N
����

	 f�N��−�N−1��N/2−1�. �13�

The function f�N� is an intricate function of N which goes
asymptotically to zero as N increases above the Kondo cloud
length 
K, which has a magnitude inversely proportional to
the Kondo temperature.41 This is the reason why even for
�=1 �ECA�, the self-energy �0

� will eventually become neg-
ligible in the limit of N�
K and can be disregarded for suf-
ficiently large N. However, this is a length scale typically
much larger than the value for which, according to Eq. �13�,
the self-energy �0

� can be neglected in comparison to �N
�.

Taking �=
2, for example, for a cluster with N=9, we get
�0

� /�N
� 	10−5, reflecting the fact that, for a cluster size which

permits diagonalization with a relatively modest numerical
effort, the contribution to the self-energy can be reduced to
�N

�. This is a very favorable situation because �0
� is a very

complex object �see Appendix� that can be obtained only
approximately, while �N

� is very simple and can be calculated
exactly. Therefore, here lies the key reason to introduce the
logarithmic discretization into the procedure.
Within this approximation, i.e., neglecting �0

�, the embed-
ding is carried out using Eq. �A18� and therefore, Eq. �10�
can be simplified to

G00���� = G00�
�0� ��� + G0N�

�0� V2gN+1,����GN0,���� . �14�

Note that the Green function of the semi-infinite linear
chain at the site N+1, gN+1,����, representing the leads, de-
pends on the value of the parameter �. For �=1, it is the
Green function, gsc, of a uniform semilinear chain, given by
gsc���= ���
�2−4t2� / �2t2�.
Before presenting results obtained with LDECA in the

next two sections, we want to discuss some general aspects
of the embedding procedure. If we were to study the low-
energy excitations by diagonalizing an undressed cluster
without performing the embedding, the necessity of incorpo-
rating a large amount of states lying in the Kondo peak re-
gion would require the diagonalization of a cluster of N sites
such that �−N/2tTk, i.e., the energy scale associated with
the broken link V in Fig. 1�a� would have to be less than the
Kondo temperature. In order to fulfill this condition, and at
the same time choose a value of � that still adequately de-
scribes the neighborhood of the Fermi energy, the value of N
would have to be such that the Lanczos diagonalization
would become impractical due to the size of the Hilbert
space. The embedding process solves this problem in a
simple way by rendering the numerical diagonalization of a
small cluster compatible with a correct description of the
energy region immediately around the Fermi energy by al-
lowing the contribution �0

���� to the self-energy to be disre-
garded. This approximation, even for �=1, has shown to be
surprisingly reliable to reproduce the Kondo regime proper-

ties of various systems, showing sufficiently fast conver-
gence with cluster size.34,42

III. RESULTS: LDECA AND 1QD

In this section, LDECA is applied to study the conduc-
tance and the local density of states �LDOS� of a single-
quantum dot connected to two leads �see Fig. 2�a��. This case
allows for a comparison of our results with an exact solution
obtained from BA.6 Applying a standard basis transformation
onto symmetric and antisymmetric combinations of states �at
sites located symmetrically with respect to the dot� the two-
leads Hamiltonian can be effectively written as having only
one lead, rendering it identical to Eq. �1�. This shows that
this example constitutes a one-channel Kondo problem.43

A. The local density of states

We start with a discussion of the effect of the � discreti-
zation on the LDOS. We expect that a larger density of poles
close to the Fermi energy EF is induced by the discretization,
while fewer poles will be present away from EF.

44 The first
aspect, the accumulation of poles close to EF is advantageous
to properly describe Kondo physics. To still obtain a reason-
able approximation to the LDOS away from the EF, it turns
out that it is preferable to use a �-dependent broadening
scheme, and we first detail this technical aspect.
The dressed LDOS at the impurity is a collection of poles

located at �p, each one with its own weight Wp, given by the
nonlinear Dyson equation used in LDECA. As a conse-
quence of the LDOS normalization, the weights satisfy
�pWp=2. In order to avoid distorting the LDOS curve
through the artificially large separation of the poles away
from the Fermi energy caused by the logarithmic discretiza-
tion, and following methods employed in NRG,36,45 we write
the LDOS as a sum of logarithmic Gaussians,45

���� =�
p

Wpe
−b2/4

b�p

�

exp� �ln � − ln �p�2

b2
� , �15�

where b is an arbitrary number that defines, together with
Wp, the width of a pole located at �p. We choose logarithmic
Gaussians to represent the delta functions rather than the
usual Gaussians or Lorentzians because this function is

(a)

(b)

1

lead
right

lead
left

t’ t’

2

1
t’’

lead
right

lead
left

c
t’

FIG. 2. �Color online� Sketch of the quantum dot geometries
studied in this work. �a� Single quantum dot connected to two leads.
�b� Two side-connected quantum dots studied in Sec. VI.
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asymmetric with respect to �p. This asymmetry, which effec-
tively shifts the spectral weight of each pole to higher ener-
gies, compensates for the accumulation of poles at low ener-
gies in relation to higher energies, caused by the logarithmic
discretization.45 As pointed out in Ref. 36, this procedure
results in high-energy peaks that are slightly broader and
asymmetric than in the case of the true LDOS.
In Fig. 3, we show the LDOS at the impurity for the

particle-hole symmetric situation Vg=−U /2 and different
values of � �thin red line� calculated with LDECA with a
cluster of L=8 sites. An imaginary part �=0.001, common to
all poles, was used for all curves that are obtained with a
plain Lorentzian broadening of delta functions �thin �red�
lines in the main panels�. The thick black lines show the
LDOS using the logarithmic Gaussian broadening with b
=0.5. In this case, we obtain the characteristic LDOS for the
Kondo problem, consisting of a three-peak structure, with
two of them located at �=Vg and �=Vg+U and the third
one, the Kondo resonance, located at the Fermi level EF=0.
The notable difference between the LDOS for �=1 and �
�1 is the sizeable narrowing of the Kondo peak, in qualita-
tive agreement with NRG �Ref. 36� �compare panels �a� with
panels �b� and �c� in Fig. 3�. A more quantitative comparison
with, e.g., NRG, will be presented elsewhere. We wish to

draw the reader’s attention to the inset of each panel, show-
ing a comparison of the undressed LDOS �thin �blue� line�
with the dressed LDOS �thick �red� line�. One can clearly see
that the LDOS for the “bare” cluster �before embedding�
vanishes at the Fermi energy, while the LDOS after embed-
ding is finite at �=0, corroborating the notion that the em-
bedding step is crucial to capture Kondo physics.
Figure 4�a� shows the LDOS for several values of the

hybridization parameter � at the particle-hole symmetric
point, and Fig. 4�b� for a fixed ratio of U /��=3.5 and sev-
eral values of the gate potential. We define the hybridization
as �=��0t�

2, where �0 is the band density of states at the
Fermi level. The top panel illustrates how the width of the
Kondo resonance, i.e., TK, decreases when � is reduced. In
the bottom panel, we see how the LDOS for a fixed U /��
=3.5 changes as the gate potential Vg is varied. Note that the
Kondo resonance is pinned at EF. In contrast, for Vg�U
�dashed �green� curve, for Vg /U=−1.7� the quantum dot is
doubly occupied and therefore there is no Kondo effect. In
such a case, the LDOS has just one broad peak located at
�=Vg+U.

B. The conductance

Next, we demonstrate the effect of the � discretization on
the conductance. The conductance as a function of the gate
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FIG. 3. �Color online� �a�–�c�: Local density of states for �=1, 2
and 4, respectively, and a cluster size L=8. Thin �red� lines repre-
sent the LDOS as obtained directly from the LDECA procedure
�ECA in the case of the top panel�, while thick �black� lines are the
LDOS for the same parameters, but after the broadening of the
resonances using �Eq. �15�� has been applied, as explained in Sec.
III A. In the insets, we show a comparison of the LDOS of the bare
cluster �thin �blue� line� and after embedding �thick �red� line� for
small values of �. All calculations done for U=1.0 and U /��
=6.3.
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FIG. 4. �Color online� �a� Local density of states for the particle-
hole symmetric gate potential Vg=−U /2 for U=1.0, �=2, and dif-
ferent values of U /��, going from the Kondo regime �U /��
=6.3� to the intermediate-valence regime �U /��=1.5�. �b� LDOS
for three different values of the gate potential for U /��=3.5 and
�=2. The inset shows a comparison of results for Vg /U=−0.24
between �=2 �solid �black� curve, same as in the main panel� and
�=1 �dashed �blue� curve�. This illustrates the better pinning of the
Kondo peak to the Fermi energy, achieved with ��1.
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potential Vg for a single embedded quantum dot is calculated
by using the Keldysh formalism.43 In Fig. 5�a�, we present
the conductance for a fixed cluster size �L=12� and different
values of �, together with the exact value obtained by the
BA.6 For �=1 �dot-dashed curve�, there is a large discrep-
ancy with the exact results: The conductance peak is too
narrow, indicating that, in this case, the role played by the
self-energy �0

� cannot be neglected. However, for �=2 �dot-
ted curve�, a value typically used in NRG calculations,7 our
LDECA results substantially improve over the ECA ones
�i.e., �=1�, and for values of � between 3 �dashed curve� and
4 �large-dots curve�, the results accurately agree with BA.
We have verified that LDECA reproduces BA results for
U /� as large as U /�=25.
As discussed above, the effect of neglecting the self-

energy �0
� depends on both the value of � and the size of the

cluster. The dependence of the conductance on cluster size is
shown in Fig. 5�b� for �=4 and L=4, 8, and 12. Beyond a
cluster size Lc���, the conductance is almost independent of
L. For instance, for �=4, results for L�8 are indistinguish-
able. This characteristic length Lc��� decreases as � in-
creases. As � controls the extension of the neighborhood of
the Fermi energy that is accurately described, i.e., the larger
the value of �, the smaller this region is, a compromise has
to be found between the size of the cluster and the extension
of the energy region around the Fermi energy that needs to
be accurately described. Obviously, this depends on the
model and the property being analyzed. The important point
to be emphasized is: the results in Fig. 5 show that, with a
value of � similar to the one widely used by the NRG com-
munity, it is possible to reproduce the exact results using a
cluster size accessible to the Lanczos algorithm.
It is also interesting to note that the improvement of the

conductance results for ��1 as compared to �=1 are asso-
ciated with a better “pinning” of the Kondo peak to the
Fermi energy. This can be partially inferred from the LDOS
results shown in Fig. 4�b�, where the two solid curves have
the Kondo peak pinned at the Fermi energy. This statement

can be made more quantitative by considering the results in
the inset of Fig. 4�b�, showing a comparison between �=1
and 2. In that inset, the solid �black� curve is an enlarged
view of the LDOS at the vicinity of the Fermi energy for the
Vg /U=−0.24 curve presented in panel �b�, which was calcu-
lated with �=2. The dashed �blue� curve has been calculated
with the same parameters, but for �=1. The comparison
clearly shows that the �=2 result has more spectral weight at
the Fermi energy than the �=1 result. This increase of the
spectral weight in the LDOS is at the heart of the improve-
ment achieved for the conductance by using the band dis-
cretization.

IV. RESULTS: LDECA AND A TWO-STAGE KONDO
SYSTEM

A. Overview: Regimes of the model

We next analyze a system composed of a double-dot side-
connected to a lead. The interdot and dot-lead connections
are given by the matrix elements t� and t�, respectively, as
sketched in Fig. 2�b�. The transformation to symmetric and
antisymmetric states is applied, since we again deal with a
one-channel Kondo problem. After performing that transfor-
mation, the Hamiltonian is given by

HT = Vg�
d,�

nd� + U/2�
d,�

nd�nd�̄

+ t�
2�
�

�cd2�
† c1� + c1�

† cd2�� + Hband

Hband = �
i=1�

�

ti�ci�
† ci+1� + ci+1�

† ci�� , �16�

where we use the ti as given in Eq. �12�, and d=d1 ,d2, la-
beling dot 1 and dot 2, respectively.
The transport properties of this two-dot system can be

expected to be controlled by the interplay between the
Kondo effect and the antiferromagnetic interdot correlation,
and by the interference arising from the two distinct paths
available to the electrons: visiting or bypassing the dots.26

As previously discussed in the literature, systems similar
to the one depicted in Fig. 2�b�, such as, for instance, the
so-called T configuration,26,28 exhibit two distinct regimes
depending on the ratio t� / t�: �i� when t�� t�, one is in the
molecular regime and �ii� for t�� t�, the system crosses over
into the TSK regime. It is important to realize that indepen-
dently of t�, we expect perfect conductance at Vg=−U /2.
Indeed, at the particle-hole symmetric point the dots always
form a singlet, which is of different nature though, depend-
ing on the ratio t� / t�, as explained below.
In the molecular regime, on the one hand, both dots act as

a single entity, in a way that, as a function of the gate poten-
tial, whenever an overall finite magnetic moment is located
in the structure, the system exhibits a single-stage Kondo
effect. In this regime of t�� t�, the system essentially be-
haves as a single-dot with the two relevant levels separated
by a large energy. On the other hand, in the limit of a small
t� / t�, such that the effective antiferromagnetic spin-spin in-
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teraction between the dots satisfies J=4�t��2 /U�TK, the sys-
tem is in the two-stage Kondo regime, which is characterized
by a new energy scale T0 related to dot 1, much lower than
the Kondo temperature TK associated to dot 2. For T�T0,
very low-energy physics is involved,25,26 difficult to be cap-
tured by numerical methods such as standard ECA or
DMRG. Yet, as shown below, a correct result for the conduc-
tance can be obtained from LDECA.
Note that TSK behavior may manifest itself both as a

function of temperature at a fixed gate potential26 and as a
function of gate potential at a fixed temperature.28 As our
method is a zero-temperature one, we will here focus on the
gate potential dependence of the conductance and other
quantities. We will argue that as one starts from the empty
orbital regime, first a single Kondo effect emerges at Vg�0,
which causes a suppression of the conductance. As the gate
potential is further tuned toward Vg=−U /2, the magnetic
moment of dot 1 is eventually Kondo screened as well
through the quasiparticles of the composite system of dot 2
and the lead. This gives rise to the aforementioned singlet
between dots 1 and 2, which leads to perfect conductance at
Vg=−U /2.
The plan of this section �Sec. IV is thus the following. We

first demonstrate in Sec. IV B that indeed, a singlet is formed
between the two dots, independently of t� / t�. These results
are obtained with both DMRG and a diagonalization of the
bare clusters, before the embedding process. Second, we
compute the conductance and charge as a function of gate
potential and discuss these results both in the molecular and
the TSK regimes in Secs. IV C and IV D, respectively. We
further aim at illustrating how the properties of the system
change as it crosses over from the molecular regime into the
TSK regime. Finally, at particle-hole symmetry �Vg=−U /2�,
we present LDECA results for the LDOS at the dots and the
conductance as a function of t� / t�. As a key result, we dem-
onstrate that using the discretization of the band, LDECA
produces perfect conductance down to very low values of
t� / t�, a result which was previously out of reach for ECA
��=1�.

B. Spin-spin correlations

For the present model, we now establish the presence of a
strong antiferromagnetic correlation between the dots by
analyzing the spin-spin correlations as a function of Vg, pre-
sented in Fig. 6 for both t�=2.0 �upper panel� and t�=0.05
�lower panel�, with t�=0.3 in both cases. Results are for large
clusters with 196 sites and �=1, obtained with DMRG, and
also for L=9 and �=2 �upper panel�, and for L=11 and �
=6 �lower panel�, using a Lanczos diagonalization proce-
dure. Both DMRG and Lanczos calculations were done with-
out embedding.
In the case of the molecular regime �t�=2, Fig. 6�a��, the

interdot correlation �S1 ·S2� is large for −2.5Vg /U1.5.
Therefore, we expect a perfect conductance in that window,
and a Kondo antiresonance to appear at Vg /U�1.5 �see Fig.
9�a� below�. For the smaller t�=0.05 �Fig. 6�b��, the antifer-
romagnetic correlation between the dots is dominant in the
window −U�Vg�0, indicating the formation of a singlet.

While the interdot spin correlation �S1 ·S2� is large at the
electron-hole symmetric point Vg=−U /2, the antiferromag-
netic correlation �S2 ·Sc�, although small, is not zero. Note
that site c is adjacent to dot 2, see Fig. 2�b�. For instance,
�S2 ·Sc� takes a maximum at Vg�0 in the case of t�=0.05,
indicative of the single-stage Kondo effect that is observed in
that gate potential region �see Fig. 11�a��.
We now study both correlations as a function of t� / t� at

Vg=−U /2, which is displayed in Fig. 7. An important obser-
vation is that �S2 ·Sc� increases in magnitude as t� is reduced,
as is shown in the inset of Fig. 7. This fact indicates the
subtle existence of a Kondo-like ground state, which is
strengthened when t� is reduced. In addition, the antiferro-
magnetic interdot correlation, presented in the main panel of
Fig. 7, also increases when t� is reduced, taking values as
large as �S1 ·S2��−0.7, for t� / t��1 /10. This is surprising,
since the interplay of these two correlations has a behavior
opposite to other known systems, such as heavy fermions
near a quantum phase transition46 or embedded two-dot
nanostructures.42 It reflects the existence of an interdot sin-
glet for all values of t��0. However, the nature of the singlet
for small t� / t� is different from that for the large t� / t� re-
gime. While in the latter case, the singlet, which is caused by
the direct interaction between the dots, destroys the Kondo
regime, in the former case it is enhanced by the Kondo spin
correlation with the intervention of the conduction electrons,
as shown by the fact that the interdot and the Kondo spin
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correlations increase when t� is reduced. These results illus-
trate the characteristics of a TSK state. The comparison of
data from large clusters �196 sites, �=1� and short ones �L
=11, �=6� yields a convincing agreement for the spin corre-
lations, especially for �S1 ·S2�, governing the interdot singlet.
This agreement indicates that the spin-spin correlations are,
so to speak, localized objects. The embedding process is not
as important to calculate static properties as it is for the con-
ductance, which we shall see later. Still, the vanishing of
�S1 ·S2� at very small t� / t� on the smaller cluster reflects that,
in this particular limit, the embedding is crucial to overcome
this finite-size effect. An important point that we want to
emphasize here is that the molecular and TSK results suggest
perfect conductance at Vg=−U /2 for any nonzero t�.

C. Molecular regime

We proceed with an analysis of the conductance for the
so-called “molecular” regime. In Fig. 8�a�, we schematically
illustrate what happens for t� / t��1.0, i.e., when the indepen-
dent dots are “locked” into “molecular” bonding and anti-
bonding orbitals, separated by a large energy, proportional to
t�. The two dots now behave as a single structure, repre-
sented by the dashed square box, side connected to the leads.
The effect of these molecular orbitals over the conductance
through the leads, as the gate potential Vg varies, is pictured
in panels �b� to �d�, where now the bonding and antibonding
orbitals are depicted inside a quantum well. In panel �b�, the
bonding orbital is in the Kondo regime. As the double-dot
structure is side connected to the leads, the conduction elec-
trons are backscattered, resulting in zero conductance.47

Panel �c� shows that, at the particle-hole symmetric point
Vg=−U /2, the bonding orbital is doubly occupied, lying be-
low the Fermi energy EF, and the antibonding orbital, lying
above EF, is empty. Therefore, in this case, the double-dot
structure creates no backscattering density of states at EF �as
schematically indicated in the panel �c��, resulting in perfect
conductance. Finally, panel �d� displays the corresponding
Kondo effect for the antibonding orbital, also resulting in
zero conductance.

Figure 9 shows the conductance and the charge vs gate
voltage in the molecular regime as obtained with LDECA for
t�=2.0, t�=0.3, and U=1 on a cluster with L=11 sites and
�=2. In this plot, one observes the two Fano-Kondo anti-
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resonances, with an approximate width of U /2, originating
from two molecular levels separated by �2� t�+U /2. It is
important to emphasize that in the molecular regime the two
dots behave as a unique entity, providing an extra lateral path
for the electrons to traverse when visiting the Kondo peak
derived from the molecular orbital. This gives rise to the
Fano antiresonance in the conductance appearing in Fig.
9�a�. As expected, both dots are charged almost simulta-
neously, as one can see in Fig. 9�a�, with a dashed line for
dot 1 and a solid thin line for dot 2. In the top of Fig. 9, the
corresponding potential wells described in Fig. 8 are dis-
played.
To illustrate the idea of a “molecular-orbital Kondo ef-

fect,” in the lower left panel, we display the LDOS associ-
ated with the molecular bonding orbital formed with the two
dots. This LDOS is calculated at the positive gate potential at
which the conductance is zero, which turns out to be at Vg
� t�−U /4, as expected. We find the molecular Kondo peak
at the Fermi energy, as well as the broadened Vg and Vg+ Ũ
levels, where the renormalized intra-orbital Coulomb repul-

sion Ũ=U /2 can be obtained by rewriting the dot Coulomb
repulsion in the basis of the bonding and antibonding orbit-
als. A similar result �not shown� is found for the LDOS of the
antibonding orbital at the Vg value for which the second
Kondo-Fano resonance occurs. The LDOS for each quantum
dot �not shown� also exhibits a Kondo peak. Indeed, since
the two dots equally participate in the molecular Kondo ef-
fect, their LDOS are quite similar to each other, and qualita-
tively similar to what is shown in Fig. 9�b�. Finally, in Fig.
9�c�, we show the LDOS for both the bonding and antibond-
ing orbitals for Vg=−U /2, where clearly the Kondo peak is
absent and the two orbital levels are separated by about 2t�.

D. Two-stage Kondo regime

Figure 10 schematically depicts a much more subtle re-
gime than that of Fig. 8, the TSK regime. One enters into this
regime when t�� t�, where now the connection of dot 2 with
the leads is much stronger than the interdot connection. Here,
the concept of bonding and antibonding orbitals does not
apply, since each dot feels the interaction with the conduc-
tion electrons differently, the crucial point being that dot 1
interacts with the Fermi sea through dot 2.
In this section and in Sec. V, we will present evidence that

our LDECA results are perfectly consistent with the notion
of TSK behavior. As a guidance to interpreting the numerical
results, this behavior can be schematically described as fol-
lows. In Fig. 10�a�, where the gate potential Vg is such that
the charge occupancy of the two dots is 1, i.e., n1+n2=1, a
Kondo effect develops, represented by the oval shape with
dashed borders, resulting in back scattering and a vanishing
conductance, as indicated by the horizontal arrows. The
Kondo effect involves a magnetic moment located in the
dots, which is screened by the conduction electrons, indi-
cated by the arrow on the dot and an antiparallel one in the
band. In Fig. 10�b�, depicting the situation for Vg=−U /2, the
two dots are each singly occupied and a strong singlet forms
between them, represented by the darker oval shape with a
solid border. Although in this regime the LDOS of dot 2 is

exactly zero at the Fermi energy, therefore suppressing the
back scattering and restoring perfect conductance �this is rep-
resented by the arrow “piercing” the lighter shaded oval�, it
does not eliminate the Kondo spin-spin correlation between
the spin of dot 2 and the conduction spins. On the one hand,
the conduction electrons do not see the two-dot system as a
unique entity: Indeed, they recognize dot 2 as a separate
object to which their spins correlate. On the other hand, the
spin of dot 1 sees the rest of the system as a whole, and
Kondo correlates with the spin of dot 2, thus creating the
two-dot singlet state. In reality, the singlet is a many-body
effect involving the conduction electrons and it is composed
of two consecutive Kondo effects �represented here by the
underlying lightly shaded oval�.
In Fig. 11, we show the LDECA conductance �panel �a��

and the charge in each dot �panel �b�� as a function of Vg for
much lower values of t� than in the previous molecular re-
gime, namely t�=0.2, 0.15, and 0.125. Let us first discuss the
charge, as an example of a quantity that exhibits a qualita-
tively different behavior for high and low values of t� / t�,
with the two dots behaving more independently as t�→0.
In the small t� / t� regime, dot 2 is charged first upon ap-

proaching Vg=0, and only when it has a substantial amount
of charge dot 1 starts to be charged as well �see Fig. 11�b��.
In addition, around Vg�0 where the minimum in the con-
ductance occurs due to the single-stage Kondo effect, the
curve for the charge of dot 2 features a much more well
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defined plateau than that for dot 1. This indicates that, in
contrast to the molecular regime �see charge behavior in Fig.
9�a��, the two dots now start to have a qualitatively different
participation in the Kondo effect, suggesting that at this
much lower value of t� / t� and at Vg�0, one starts to see the
emergence of the first stage of the TSK regime. �Notice that
DMRG results for the charge and the total spin as a function
of Vg for large clusters �not shown� agree with the LDECA
picture just described�. In addition, the width of the Kondo
antiresonance seen in Fig. 9�a� is now substantially smaller
than U /2, which is the typical value found in the molecular
regime, see Fig. 9�a�, although much larger than the intrinsic
width of the dots’ resonance states. Finally, as one ap-
proaches Vg=−U /2, and each dot now has one electron, the
second stage of the TSK is reached. In this regime, through
the mediation of the conduction electrons, the interdot singlet
is formed and, although it shows a two-Kondo peak struc-
ture, the LDOS of dot 2 is zero at the Fermi energy �see Fig.
13�b��. As a consequence, the system exhibits perfect con-
ductance �see Fig. 11�a��.

E. Conductance and LDOS at Vg=−U Õ2

Next, we discuss the conductance at the particle-hole
symmetric point as a function of t� to show that LDECA
correctly captures the low-energy physics down to small val-
ues of t�.
Figure 12 displays the conductance vs t� for various val-

ues of � and L=11. We recall that, as exemplified in Figs. 9
and 11, the conductance at Vg=−U /2 for any t��0 should
be G=G0. We study the electron-hole symmetric situation, as
it is the most difficult point to be correctly described, having
the lowest Kondo temperature for the set of parameters
taken. The suppression of the conductance for small values
of t� / t� shown in Fig. 12 is caused by finite-size effects
which obscure the second stage Kondo effect. In this specific

case, we find the tendency of a strong suppression of spin
fluctuations in dot 1 as the system approaches half-filling,
�Vg=−U /2�. This behavior at �=1 is similar to other models
discussed in detail in Ref. 21. Figure 12 suggests that the
finite-size dependence of the conductance for �=1 �circles�
is quite severe, as it starts to manifest itself at t� / t��0.5.
However, it is also evident that by increasing � the situation
improves markedly, which is the main message to be taken
from this figure.
From the curves for each different � we can extract a

characteristic interdot coupling tc����, satisfying G�tc�� /G0
=1 /2, below which the conductance rapidly approaches zero.
The dependence of tc� on �−1 for two different values of L is
shown in the inset. tc���� tends to zero for values of � that
decrease with increasing cluster size. Therefore, at Vg=
−U /2, G /G0→1 when t�→0.
To further demonstrate the difference between the mo-

lecular and the TSK regimes at Vg=−U /2, Fig. 13 shows a
comparison between the LDOS for two widely different val-
ues of t� / t�. In Fig. 13�a�, we show the LDOS at dot 2 for
t�=2.0, t�=0.3, U=1.0, and �=2. These are the same param-
eters as the ones used in Fig. 9�c�, where the bonding and
antibonding orbitals where shown. Figure 13�a� unveils why
the conductance in the molecular regime is G=G0 at Vg=
−U /2 �see Fig. 9�a��, as dot 2 has a vanishing density of
states in a wide energy region around the Fermi level. Once
there is no backscattering density of states at the Fermi en-
ergy, the conductance is perfect.
On the other hand, in Fig. 13�b�, LDOS results for dot 2

are depicted for t�=5−2, and �=
6, and the same values of t�
and U as in Fig. 13�a�. Again, the density of states at the
Fermi energy vanishes. However, in this case, close to the
Fermi energy, we find two sharp features, suggestive of a
Kondo peak split in two. To substantiate this picture, the
dashed �red� curve in Fig. 13�b� shows the Kondo peak that
is present when t�=0, i.e., when dot 1 is effectively removed.
It is the presence of dot 1, interacting with the rest of the
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are for �=2.0, except for t�=0.125, where �=
6. Notice that the
conductance and charge features at Vg�0 and Vg=−U /2 were as-
sociated to the schematic introduced in Fig. 10.
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system through dot 2, that gives rise to the TSK regime,
reflected in the LDOS of dot 2 as an antiresonance in the
middle of its Kondo peak.
In summary, the fact that the Kondo regime of dot 1 is

mediated by the Kondo state of dot 2 explains the surprising
result of a perfect conductance at Vg=−U /2 in the TSK re-
gime. This mechanism reduces the LDOS at the Fermi level
of dot 2 to zero as shown in Fig. 13�b�, eliminating an alter-
native path for the circulating electrons and hence any de-
structive interferences. In this regime, the electrons at the
dots form a spin singlet, even at small t� / t�. This subtle
effect and its consequences on the conductance are well cap-
tured by LDECA. It is then clearly shown in Figs. 12 and 13
that the logarithmic discretization of the band, combined
with the embedding process, provides reliable results in a
wide parameter range.

V. SUMMARY

In this paper, we developed a formalism to study local and
highly correlated electrons that combines the numerical sim-
plicity of the ECA method with Wilson’s idea of a logarith-
mic discretization of the noninteracting band. A diagram-
matic expansion that provides a solid theoretical basis for the

method was also discussed. Applied to a one-impurity prob-
lem, LDECA yields an excellent agreement with BA results.
In addition, following the same procedure used in NRG to
broaden the LDOS, a perfect agreement was found with the
accepted results for the LDOS of the Anderson impurity
model. In the case of a double-dot side connected to a lead,
and at small t�, the contrast between the �=1 �ECA� and �
�1 �LDECA� results exemplifies the power of the logarith-
mic discretization: the low-energy physics associated to the
TSK regime is correctly unveiled, as LDECA provides an
accurate description of the physics close to the Fermi energy.
The main advantage of LDECA is its great flexibility,

which allows the incorporation of other degrees of freedom,
such as localized phonons or photons.48 The restrictions im-
posed by the Lanczos method can be overcome by using
DMRG,17 allowing one to use larger systems and to study
more involved problems. Related efforts are in progress.
We conclude that the LDECA method can be applied to

complex problems, including molecules adsorbed at a metal-
lic surface30 and sophisticated topologies of quantum dots,
displaying exotic Kondo regimes, such as, for example, non-
Fermi-liquid behavior, two-channel Kondo effect and the
physics associated to SU�N� systems.
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APPENDIX A: DIAGRAMMATIC EXPANSION

In this appendix we develop the diagrammatic expansion
of the one-particle Green function at the impurity site given
by

G00,��t − t�� =
�T �c0��t�c0�

† �t��S�����0
�S����0

, �A1�

where, as usual, S��� is the evolution operator and T is the
time order operator. The mean values are calculated in the
ground state of the unperturbed Hamiltonian H0, given by
Eq. �4�, restricting our discussion to zero temperature.
The evolution operator S��� is expanded in increasing

orders of the perturbing term Hp, which, when inserted in Eq.
�A1�, gives rise to a perturbation series for the Green func-
tion. It can be written as
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FIG. 13. �Color online� �a� LDOS at dot 2 for L=11, t�=2, t�
=0.3, U=1, Vg=−U /2, and �=2 �same parameters as the ones in
Fig. 9�c�, but here we show the LDOS of dot 2 only�. Notice the
large region of vanishing LDOS around the Fermi energy ��=0�.
�b� Same as in �a�, but now for t�=5�10−2 and �=
6 �solid �black�
line�. Notice that, as in �a�, the LDOS vanishes at the Fermi energy,
but now only in a very narrow interval. A comparison of the width
of the double-peak structure at low � with the LDOS results for
t�=0 �dashed �red/gray� line�, i.e., for a single side-connected dot,
suggests that the double-peak structure is a split Kondo peak. An
enlarged view of the double-peak structure is seen in the inset.
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S��� =�
n=1

�
− in

n ! �S�����t0
t

. . .�
t0

t

��T�c0��t�Hp�t1� . . . Hp�tn��c0�
† �t���0dt . . . dtn.

�A2�

Substituting this expression into Eq. �A1�, the local Green
function is given by

G00,��t − t�� = g0,��t − t��

+ V2 �
�1�2

� g0,N,N+1,�,�1,�2�t,t1,t2,t��dt1dt2

+ V4 �
�1�2�3�4

g0,N,N+1,�,�1,�2,�3,�4

��t,t1,t2,t3,t4,t��dt1dt2dt3dt4 + ¯ . �A3�

It is important to emphasize, as shown in Eq. �A3�, that the
conservation of charge of the unperturbed subsystem restricts
the expansion to even orders in V. The undressed Green
function appearing in the equation is defined as

g0,N,N+1,�,�1,�2�t,t1,t2,t��

= �T�c0��t�cN�1

† �t1�cN+1�1
�t1�cN+1�2

† �t2�cN�2
�t2�c0�

† �t����0,

�A4�

with an obvious generalization for the undressed Green func-
tion of other orders. Calculating terms of all orders in V in
the expansion, Eq. �A3�, the local Green function can be
written as

G00,��t − t�� = G00,�
�0� �t − t�� + G00,�

�2� �t − t��

+ G00,�
�4� �t − t�� + ¯ . �A5�

As the operators belonging to the two different unperturbed
parts of the system are, in this ground state, decoupled from
each other since there is no connection between the cluster
and the rest of the leads, Eq. �A4� results in

g0,N,N+1,�,�1,�2�t,t1,t2,t��

= g0,N,�,�1�t,t1,t2,t��gN+1,�1�t1,t2���1�2
, �A6�

where the spin conservation imposes the condition �1=�2
and

g0,N,�,�1�t,t1,t2,t�� = �T�c0,��t�cN,�1
† �t1�cN,�1�t2�c0,�

† �t����0,

�A7a�

gN+1,�1�t1,t2� = �T�cN+1,�1�t1�cN+1,�1
† �t2���0. �A7b�

According to Eq. �A6�, the expansion Eq. �A3� is formally a
locator-propagator expansion49 where the locators corre-
spond to the unperturbed subsystems Green functions and
the propagator turns out to be the one connecting them.
This Green function g0,N,�,�1 can be diagrammatically rep-

resented by

g0,N,σ,σ1
(t, t1, t2, t

′) = � σ1 �
t1 � t2�

σ1

t σ t′

T
{
coσ(t)c†Nσ1

(t1)cNσ1
(t2)c

†
oσ(t

′)
}

and

gN+1,σ(t1, t2) = ��� �� �� �� �t1 σ t2T {cN+1σ1
(t1)cN+1σ1

(t2)}

The zeroth-order contribution to the Green function, i.e., the
solution of the problem for V=0, is represented in terms of
diagrams as

G
(0)
00,σ(t − t′) =

〈
T

{
c0σ(t)c†0σ(t′)

}〉
0

= � �
t σ t′

�A8�
The Green function is exactly obtained by calculating the

ground state of the cluster using the Lanczos method. Al-
though it includes the many-body interaction and its effects
within the cluster, it is the undressed Green function with
respect to the expansion given by Eq. �A5�.
To second order in perturbation theory, the contribution to

G00,��t− t�� is

G00,�
�2� �t − t�� =

V2

�S����0

��
�1

� g0,N,�,�1�t,t1,t2,t��gN+1,�1�t1,t2�dt1dt2, �A9�

and can be diagrammatically represented as

G
(2)
00,σ(t− t′) = � σ1

t

t1
σ1��� �� �� t2

σ

�
σ1 �

t′
,

�A10�

where an integration over each internal time t1 and t2 is im-
plied and the sum over �1 needs to be taken.
Regarding the calculation of the many-particle Green

functions at the lead sites outside the cluster, Wick’s theorem
can be used since this part of the system is represented by a
one-body Hamiltonian. In this case, it is clear that for the
fourth order we obtain the diagram

G
(4)
00,σ(t− t′) = � σ1

t

t1
σ1��� �� �� t2

σ

�
σ1 �

t′

σ2

t3 ��� �� ��

σ2 t4�
σ2

,

�A11�

such that the dressed locator G00,��t− t�� can be cast into
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G00,σ(t−t′) = � �
t σ t′

= � �
t σ t′

+ � �
��� �� ���

t σ t′

t1
σ1

t2
σ1

σ1

+ � �
��� �� �� � ��� �� ���

t σ t′

t1
σ1

t2
σ1 σ2

σ1 σ2t3 t4
σ2

+ · · · .

�A12�

Although the cluster’s undressed one-particle Green function
� �
t σ t′

can be calculated exactly using the Lanczos method, the un-
dressed cluster, n-particle Green function,

�
1

�
� 2� n� �· · · � �

, is unknown for n ≥ 1.

It is clear that these functions cannot be calculated directly
using the prescription provided by Wick’s theorem because
they include many-body Coulomb contributions coming
from the impurity.
In order to sort out this difficulty we propose another

perturbation expansion, assuming the cluster without the
many-body term at the impurity as the unperturbed Hamil-
tonian and HMB as the perturbation. The enormous advantage
of this expansion in contrast with the previous one is that
Wick’s theorem is applicable because the nonperturbed sys-
tem is represented by a one-particle Hamiltonian. For an in-
finite system, this expansion has been extensively used to
calculate the one-particle Green function to study, for in-
stance, the Kondo effect. In most cases, these studies have
been restricted to expansions in the self-energy up to second
order in the Coulomb interaction parameter U.49 However,
we are in a different situation here because the system is
finite and, more importantly, it requires the calculation of the
Green function to all orders in the number of particles. In our
case, the one-particle Green function can be numerically cal-
culated. After these diagrams are obtained, they are incorpo-
rated into the original diagrammatic expansion, Eq. �A12�, in
order to obtain the Green function of the complete system
G00,��t− t��. When calculating the self-energy, this procedure
in principle permits to sum up, to all orders in U, the most
important families of diagrams. These are chosen among the
ones that are essential to give a proper account of the region
near the Fermi level.
We use Eqs. �A1� and �A2� to obtain this new diagram-

matic expansion. It is worth mentioning that now the mean
values �¯�0 are calculated in the ground state of the cluster
without the Coulomb interaction and that the evolution op-
erator Eq. �A2� requires the substitution of Hp by HMB.
In order to clarify the procedure and to establish the dia-

grammatic rules, we calculate the first diagrams correspond-
ing to the locator g0,N,�,�1�t , t1 , t2 , t��, Eq. �A7�. We define
three undressed Green functions,

g
(0)
00,σ(t− t′) = 〈T {c0σ(t), c0σ(t′)}〉0 = � �t t′σ

�A13a�

g
(0)
0N,σ(t − t′) =

〈
T

{
c0σ(t), c†Nσ(t

′)
}〉

0
= � �t t′σ

�A13b�

g
(0)
Nσ(t − t′) =

〈
T

{
cNσ(t)c†Nσ(t′)

}〉
0

= � �t t′σ

�A13c�

that, together with Eq. �A7�, constitute the building blocks of
the diagrammatic expansion.
The contribution to the Green function to zero order in U,

g0,N,�,�1�t , t1 , t2 , t��, defined in Eq. �A7� is given by

g
(0)
0N,σ(t, t1)g

(0)
0N,σ(t2, t

′)δσσ′ + g
(0)
00,σ(t, t′)gNN,σ′(t1, t2

�

�

t

t1

t′
σ

�

�t2
σ +

� �t t′σ

� �t1 t2σ′

.

)

=

�A14�

From this result we infer that the contribution to G00,�
�2� �t

− t�� in zero order in U is

�

�

t

t1

t′
σ

�

�t2
σ

�� �� �� ��

σ

+

� �t t′

��� �� �� �� �� �� �� �
t1 t2σ′

σ′

σ .

The second diagram is a nonconnected one and, as usual,
does not contribute to the Green function.38

To first order in U, incorporating all the possible contrac-
tions resulting from the application of Wick’s theorem and
eliminating the nonconnected diagrams, the contributions to
G00,�

�2� �t− t�� are

�� �� �� ��

t

t1

t′
σσ

σ̄σ̄

σ̄ t2� �

� ��
��

�

�
� �

�� t3 +

�

�

t

t1

t′.

σ

�

�t2

σ

�� �� �� ��

σ

� �� ��� σ̄
σ

t3

From these calculations, we conclude that there are two dif-
ferent types of vertices • and �. At each • vertex there is one
incoming and outgoing propagator and a factor of V has to be
included. These are the vertices that result from the one-
particle Hamiltonian Hp. The other vertex � comes from the
Hamiltonian HMB. There are two incoming and two outgoing
spin � and �̄ propagators and a factor of U included at this
vertex. As usual, the integral over the time variable associ-
ated to each vertex has to be taken.
These rules are schematically represented as

�� �� �� ��

σV
t1

σ

�

�
��

�

�
� �

�� σ̄

σσ̄

σ
t1 U .
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To second order in U the topologically different connected
diagrams that contribute to G00,��t− t�� are

�

�

t

t1

t′�

�

� �� ���

t2
�� �� �� ��

� �� ���

σ

σ

σ
σ

σ
σ̄

σ̄

t3

t4

�

�

t

t1

t′
σ

σ̄

�

�
� �� ���

t2

σ

�� �� �� ��

σ

� �� ���
σ σ

σ̄t3 t4
�

�

t

t1

t′
σ �

�
	

�

t2
�� �� �� ��

σ

�
�

�σ
σσ̄σσ̄

t3

t4

�� �� �� ��

t

t1

t′
σσ̄

σσ

σ t2� �

� ��
�

�
� �

�

�
�

�
t3
σ

σ

t4� �� ���

�� �� �� �� ��

t

t1

t′
σσ

σσ

σ

σ̄

σ̄

t2� �

� �
t4t3�

��

�
�� �

��

�
���� 


� 	�

.

�A15�

The one-particle cluster Green function exactly obtained
by numerical means, defined in Eq. �A8�, can be thought of
to be the result of the sum of the following infinite series of
diagrams:

G
(0)
i0,σ(t− t′) = �×

t t′
i �

σ
= �× �

σ
i

t t′
+

�i
t t1 t′
× �

�
�

�
�� �

σ

σ̄

σ + �i× �� �
� ��� ��

σ

σ̄

σ
σ̄

t

t1 t2
t′

+

�×i
�
�

�
��� � �

� ��� �� ��
σ

σ̄

σ
σ

σ̄

σ̄

σt t1

t2 t3
t′

+ · · ·

�A16�
where �

i

can be any site within the cluster although we are
particularly interested in the impurity site � or the site • at the
edge of the cluster. We use the dressed one-particle cluster
Green function to incorporate all the diagrams of Eq. �A16�
into the expansion for the Green function G00,��t− t��, Eq.
�A5�. This results in

� �
t t′

= � �
t t′σ

+ � � �� �� �� ��� �
t σ t1

σ

t2 σ t′
+ � � �

�� �� �� ��
σ̄

σ̄ σ̄

t2 t3� �
�

�� �
��

t σ t1 σ t′
+

�
t σ

�t3

σ

t4

σσ̄

σ̄

�

�
t′

� �
� �
� �� �

t′σ

�� �� �� ��

+ �
t σ t1 σ t2 σ t3 σ t4 σ t′

� �� �� �� �� � � �� �� �� �� � � + · · ·
�A17�

After taking a Fourier transformation in time, we define
the self-energies,

Σσ
N (ω) = �V σ V

�� �� �� �� � = gN+1,σ(ω)V 2

�A18�

�� �� �� ��
σ̄

σ̄ σ̄

� �
�

�� �
��� +

� �� �� �� �� �

�� �
� �� ��

σ̄

σ̄ σ̄σ

σ

+

� �� �� �� �� �

�� �
� �� ��

σ

σ σσ̄

σ̄

+
Σσ

0 (ω) =

�� �� �� ��

σ

σ σ

� �

+ · · ·�
�� �

���	

��

�
��

σ̄ σ̄

�A19�

where we have explicitly drawn the contribution to the self-
energy up to terms proportional to U2.
The Green function of the system at the impurity can be

written as a general Dyson equation:

G00,���� = G00,�
�0� ��� +�

i

G0i,�
�0� ����i

����Gi0,���� ,

�A20�

where i is restricted to be either 0 or N and the self-energy
�i

���� is defined as

�i
���� = �N

�����iN + �0
�����i0. �A21�

In order to compare the relative contribution of �0
� and �N

�,
which crucially depends upon the cluster size N, we proceed
as follows. Considering that V= tN and using Eqs. �A18� and
�12� we have that
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�N
���� � V2 	 �−�N−1�, �A22�

where we have ignored the Green function gN+1,��w� because
we have numerically verified that in the neighborhood of the
Fermi energy this function is independent of N.
To evaluate the dependence of �0

� upon N, we observe
that all terms in Eq. �A19� are multiplied by the square of the
nondiagonal cluster propagator

G
(0)
0N+1 = � �

t σ̄ t′
.

�A23�

In addition, the dependence of this propagator on � is given
by

M����i=0
N ti 	 �−�N−1�N/4, �A24�

where the function M��� goes asymptotically to zero when
N increases above a characteristic length, which in our case
corresponds to the size of the Kondo cloud. Defining f�N�
=M2��� we obtain,

�0
���� 	 f�N��−�N−1�N/2. �A25�

As discussed in the main text in Sec. II, the contribution
to the self-energy �0

���� can be neglected when compared
with �N

���� when the density of states of the leads is loga-
rithmically discretized, as their ratio is then proportional to:

�0
����

�N
����

	 f�N��−�N−1��N/2−1�. �A26�

In this case, the embedding process is extremely simplified.
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