Generalized entropic measures of quantum correlations

R. Rossignoli
In collaboration with N. Canosa, L. Ciliberti

Departamento de Física-IFLP
Universidad Nacional de La Plata, Argentina
CIC-CONICET

PARATY 2011
Majorization
Majorization

When can we say that a mixed state ρ is “more mixed” than another state ρ'?
Majorization

When can we say that a mixed state ρ is “more mixed” than another state ρ'?

Answer 1: When $S(\rho) \geq S(\rho')$ \quad ($S(\rho) = -\text{Tr} \rho \log \rho$ von Neumann entropy)
Majorization

When can we say that a mixed state \(\rho \) is “more mixed” than another state \(\rho' \)?

Answer 1: When \(S(\rho) \geq S(\rho') \) \((S(\rho) = -\text{Tr} \rho \log \rho \text{ von Neumann entropy})\)

Answer 2: When \(\rho < \rho' \) with \(<\) “majorized by”:
Majorization

When can we say that a mixed state ρ is “more mixed” than another state ρ'?

Answer 1: When $S(\rho) \geq S(\rho')$ ($S(\rho) = -\text{Tr} \rho \log \rho$ von Neumann entropy)

Answer 2: When $\rho \prec \rho'$ with \prec “majorized by”:

$$\rho \prec \rho' \iff \sum_{j=1}^{i} p_j \leq \sum_{j=1}^{i} p'_j, \quad j = 1, \ldots, n - 1$$

p_j, p'_j eigenvalues of ρ, ρ' sorted in decreasing order
Majorization

When can we say that a mixed state ρ is “more mixed” than another state ρ'?

Answer 1: When $S(\rho) \geq S(\rho')$ ($S(\rho) = -\text{Tr} \, \rho \log \rho$ von Neumann entropy)

Answer 2: When $\rho \prec \rho'$ with \prec “majorized by”:

$$\rho \prec \rho' \iff \sum_{j=1}^{i} p_j \leq \sum_{j=1}^{i} p'_j, \quad j = 1, \ldots, n - 1$$

p_j, p'_j eigenvalues of ρ, ρ' sorted in decreasing order

$\left(\frac{1}{n}, \ldots, \frac{1}{n}\right) \prec p \prec (1, 0, \ldots, 0) \quad \forall \, p \quad \Rightarrow \quad \frac{1}{n} \prec \rho \prec \left|\Psi\right\rangle\left\langle\Psi\right| \quad \forall \, \rho$
Majorization

When can we say that a mixed state ρ is “more mixed” than another state ρ'?

Answer 1: When $S(\rho) \geq S(\rho')$ ($S(\rho) = -\text{Tr} \rho \log \rho$ von Neumann entropy)

Answer 2: When $\rho \prec \rho'$ with \prec “majorized by”:

$$\rho \prec \rho' \iff \sum_{j=1}^{i} p_j \leq \sum_{j=1}^{i} p'_j, \quad j = 1, \ldots, n - 1$$

p_j, p'_j eigenvalues of ρ, ρ' sorted in decreasing order

$\left(\frac{1}{n}, \ldots, \frac{1}{n}\right) \prec p \prec (1, 0, \ldots, 0) \forall p \Rightarrow \frac{1}{n} \prec \rho \prec |\Psi\rangle\langle\Psi| \forall \rho$

Relation with von Neumann entropy:

$$\rho \prec \rho' \Rightarrow S(\rho) \geq S(\rho')$$
Majorization

When can we say that a mixed state ρ is “more mixed” than another state ρ'?

Answer 1: When $S(\rho) \geq S(\rho')$ ($S(\rho) = -\text{Tr} \rho \log \rho$ von Neumann entropy)

Answer 2: When $\rho \prec \rho'$ with \prec “majorized by”:

$$\rho \prec \rho' \iff \sum_{j=1}^{i} p_j \leq \sum_{j=1}^{i} p'_j, \quad j = 1, \ldots, n - 1$$

p_j, p'_j eigenvalues of ρ, ρ' sorted in decreasing order

$$\left(\frac{1}{n}, \ldots, \frac{1}{n}\right) \prec p \prec (1, 0, \ldots, 0) \forall p \quad \Rightarrow \quad \frac{1}{n} \prec \rho \prec |\Psi\rangle\langle\Psi| \quad \forall \rho$$

Relation with von Neumann entropy:

$$\rho \prec \rho' \Rightarrow S(\rho) \geq S(\rho') \quad \text{but} \quad S(\rho) \geq S(\rho') \not\Rightarrow \rho \prec \rho'$$
Majorization

When can we say that a mixed state ρ is “more mixed” than another state ρ'?

Answer 1: When $S(\rho) \geq S(\rho')$ ($S(\rho) = -\text{Tr} \rho \log \rho$ von Neumann entropy)

Answer 2: When $\rho \prec \rho'$ with \prec “majorized by”:

$$\rho \prec \rho' \iff \sum_{j=1}^{i} p_j \leq \sum_{j=1}^{i} p'_j, \quad j = 1, \ldots, n - 1$$

p_j, p'_j eigenvalues of ρ, ρ' sorted in decreasing order

$$\left(\frac{1}{n}, \ldots, \frac{1}{n}\right) \prec p \prec (1, 0, \ldots, 0) \forall p \quad \Rightarrow \quad \frac{1}{n} \prec \rho \prec |\Psi\rangle\langle\Psi| \forall \rho$$

Relation with von Neumann entropy:

$$\rho \prec \rho' \Rightarrow S(\rho) \geq S(\rho') \quad \text{but} \quad S(\rho) \geq S(\rho') \not\Rightarrow \rho \prec \rho'$$

Majorization stronger than basic entropic criterion
Majorization and generalized entropies

Majorization actually implies *universal* entropy increase:

\[\rho < \rho' \Rightarrow S_f(\rho) \geq S_f(\rho') \land S_f(\rho) \]
Majorization and generalized entropies

Majorization actually implies \textit{universal} entropy increase:

\[\rho \prec \rho' \implies S_f(\rho) \geq S_f(\rho') \quad \forall S_f(\rho) \]

for all generalized entropies \(S_f(\rho) = \text{Tr } f(\rho) \)

with \(f(\rho) \) an \textit{arbitrary} concave function satisfying \(f(0) = f(1) = 0 \)
Majorization and generalized entropies

Majorization actually implies universal entropy increase:

\[\rho \prec \rho' \iff S_f(\rho) \geq S_f(\rho') \ \forall S_f(\rho) \]

for all generalized entropies \(S_f(\rho) = \text{Tr} f(\rho) \)

with \(f(\rho) \) an arbitrary concave function satisfying \(f(0) = f(1) = 0 \)

Moreover, majorization equivalent to general entropic inequality
Majorization actually implies universal entropy increase:

\[\rho \prec \rho' \iff S_f(\rho) \geq S_f(\rho') \quad \forall S_f(\rho) \]

for all generalized entropies \(S_f(\rho) = \text{Tr} f(\rho) \)

with \(f(\rho) \) an arbitrary concave function satisfying \(f(0) = f(1) = 0 \)

Moreover, majorization equivalent to general entropic inequality

(RR-NC PRA 67 (2003))
Majorization and generalized entropies

Majorization actually implies \textit{universal} entropy increase:
\[\rho \prec \rho' \iff S_f(\rho) \geq S_f(\rho') \quad \forall S_f(\rho) \]
for all generalized entropies \(S_f(\rho) = \text{Tr} \ f(\rho) \)
with \(f(\rho) \) an \textit{arbitrary} concave function satisfying \(f(0) = f(1) = 0 \)

Moreover, majorization \textit{equivalent} to general entropic inequality
\cite{RR-NC PRA 67 (2003)}

All generalized entropies \(S_f(\rho) = \text{Tr} \ f(\rho) \) satisfy \cite{RR-NC PRL 88 (2002)}:
Majorization and generalized entropies

Majorization actually implies universal entropy increase:

\[\rho \prec \rho' \iff S_f(\rho) \geq S_f(\rho') \quad \forall S_f(\rho) \]

for all generalized entropies \(S_f(\rho) = \text{Tr} f(\rho) \)

with \(f(\rho) \) an arbitrary concave function satisfying \(f(0) = f(1) = 0 \)

Moreover, majorization equivalent to general entropic inequality

(RR-NC PRA 67 (2003))

All generalized entropies \(S_f(\rho) = \text{Tr} f(\rho) \) satisfy (RR-NC PRL 88 (2002)):

\[S_f(\rho) \geq 0, \text{ with } S_f(\rho) = 0 \text{ iff } \rho^2 = \rho \text{ (pure state)} \]
Majorization and generalized entropies

Majorization actually implies universal entropy increase:
\[\rho \prec \rho' \iff S_f(\rho) \geq S_f(\rho') \quad \forall S_f(\rho) \]
for all generalized entropies \(S_f(\rho) = \text{Tr} f(\rho) \)
with \(f(\rho) \) an arbitrary concave function satisfying \(f(0) = f(1) = 0 \)

Moreover, majorization equivalent to general entropic inequality
(\(\text{RR-NC PRA 67 (2003)} \))
All generalized entropies \(S_f(\rho) = \text{Tr} f(\rho) \) satisfy (\(\text{RR-NC PRL 88 (2002)} \)):
\[S_f(\rho) \geq 0, \text{ with } S_f(\rho) = 0 \text{ iff } \rho^2 = \rho \text{ (pure state)} \]
\(S_f(\rho) \) maximum for the maximally mixed state
Majorization actually implies universal entropy increase:

\[\rho \prec \rho' \iff S_f(\rho) \geq S_f(\rho') \quad \forall S_f(\rho) \]

for all generalized entropies \(S_f(\rho) = \text{Tr} \ f(\rho) \)

with \(f(\rho) \) an arbitrary concave function satisfying \(f(0) = f(1) = 0 \)

Moreover, majorization equivalent to general entropic inequality (RR-NC PRA 67 (2003))

All generalized entropies \(S_f(\rho) = \text{Tr} \ f(\rho) \) satisfy (RR-NC PRL 88 (2002)):

\[S_f(\rho) \geq 0, \text{ with } S_f(\rho) = 0 \text{ iff } \rho^2 = \rho \text{ (pure state)} \]

\(S_f(\rho) \) maximum for the maximally mixed state

\[S(\rho) = -\text{Tr} \ \rho \log \rho \quad \text{von Neumann entropy} \]
Majorization and generalized entropies

Majorization actually implies universal entropy increase:
\[\rho < \rho' \iff S_f(\rho) \geq S_f(\rho') \quad \forall S_f(\rho) \]
for all generalized entropies \[S_f(\rho) = \text{Tr} \, f(\rho) \]
with \(f(\rho) \) an arbitrary concave function satisfying \(f(0) = f(1) = 0 \)

Moreover, majorization equivalent to general entropic inequality
(\text{RR-NC PRA 67 (2003)})

All generalized entropies \[S_f(\rho) = \text{Tr} \, f(\rho) \]
satisfy (\text{RR-NC PRL 88 (2002)}):
\[S_f(\rho) \geq 0, \text{ with } S_f(\rho) = 0 \text{ iff } \rho^2 = \rho \text{ (pure state)} \]
\[S_f(\rho) \text{ maximum for the maximally mixed state} \]
\[S(\rho) = -\text{Tr} \, \rho \log \rho \text{ von Neumann entropy} \]
\[S_2(\rho) = 2\text{Tr} \, (\rho - \rho^2) \text{ Linear entropy} \]
Majorization and generalized entropies

Majorization actually implies universal entropy increase:

\[\rho \prec \rho' \iff S_f(\rho) \geq S_f(\rho') \quad \forall S_f(\rho) \]

for all generalized entropies \(S_f(\rho) = \text{Tr} f(\rho) \)

with \(f(\rho) \) an arbitrary concave function satisfying \(f(0) = f(1) = 0 \)

Moreover, majorization equivalent to general entropic inequality

(\(\text{RR-NC PRA 67 (2003)} \))

All generalized entropies \(S_f(\rho) = \text{Tr} f(\rho) \) satisfy (\(\text{RR-NC PRL 88 (2002)} \)):

\[S_f(\rho) \geq 0, \text{ with } S_f(\rho) = 0 \text{ iff } \rho^2 = \rho \text{ (pure state)} \]

\(S_f(\rho) \) maximum for the maximally mixed state

\[S(\rho) = -\text{Tr} \ \rho \log \rho \quad \text{von Neumann entropy} \]

\[S_2(\rho) = 2\text{Tr} \ (\rho - \rho^2) \quad \text{Linear entropy} \]

\[S_q(\rho) = \frac{1}{1-2^{1-q}} \text{Tr} \ (\rho - \rho^q) \]
Majorization and generalized entropies

Majorization actually implies universal entropy increase:

$$\rho \prec \rho' \iff S_f(\rho) \geq S_f(\rho') \quad \forall S_f(\rho)$$

for all generalized entropies $S_f(\rho) = \text{Tr} \ f(\rho)$

with $f(\rho)$ an arbitrary concave function satisfying $f(0) = f(1) = 0$

Moreover, majorization equivalent to general entropic inequality

(RR-NC PRA 67 (2003))

All generalized entropies $S_f(\rho) = \text{Tr} \ f(\rho)$ satisfy (RR-NC PRL 88 (2002)):

$S_f(\rho) \geq 0$, with $S_f(\rho) = 0$ iff $\rho^2 = \rho$ (pure state)

$S_f(\rho)$ maximum for the maximally mixed state

$S(\rho) = -\text{Tr} \ \rho \log \rho$ \ von Neumann entropy

$S_2(\rho) = 2\text{Tr} \ (\rho - \rho^2)$ \ Linear entropy

$S_q(\rho) = \frac{1}{1-q} \text{Tr} \ (\rho - \rho^q)$

$S_q(\rho) \rightarrow S_1(\rho) = S(\rho)$ for $q \rightarrow 1$
Majorization and generalized entropies

Majorization actually implies universal entropy increase:

\[\rho \prec \rho' \iff S_f(\rho) \geq S_f(\rho') \ \forall S_f(\rho) \]

for all generalized entropies \(S_f(\rho) = \text{Tr} \ f(\rho) \)

with \(f(\rho) \) an arbitrary concave function satisfying \(f(0) = f(1) = 0 \)

Moreover, majorization equivalent to general entropic inequality (RR-NC PRA 67 (2003))

All generalized entropies \(S_f(\rho) = \text{Tr} \ f(\rho) \) satisfy (RR-NC PRL 88 (2002)):

- \(S_f(\rho) \geq 0 \), with \(S_f(\rho) = 0 \) iff \(\rho^2 = \rho \) (pure state)
- \(S_f(\rho) \) maximum for the maximally mixed state

\[S(\rho) = -\text{Tr} \ \rho \log \rho \] von Neumann entropy

\[S_2(\rho) = 2\text{Tr} \ (\rho - \rho^2) \] Linear entropy

\[S_q(\rho) = \frac{1}{1-2^{1-q}} \text{Tr} \ (\rho - \rho^q) \]

\[S_q(\rho) \to S_1(\rho) = S(\rho) \text{ for } q \to 1 \]
Measurement and Majorization
Measurement and Majorization

Initial quantum state ρ
Measurement and Majorization

Initial quantum state ρ
Measurement $M = \{P_k\}$, $\sum_k P_k = I$, $P_k P_{k'} = \delta_{kk'} P_k$
Measurement and Majorization

Initial quantum state ρ

Measurement $M = \{P_k\}, \sum_k P_k = I, P_k P_{k'} = \delta_{kk'} P_k$

State after unread measurement:

$$\rho' = \sum_k p_k \rho_k = \sum_k P_k \rho P_k$$
Measurement and Majorization

Initial quantum state ρ
Measurement $M = \{P_k\}$, $\sum_k P_k = I$, $P_k P_{k'} = \delta_{kk'} P_k$

State after unread measurement:

$$\rho' = \sum_k p_k \rho_k = \sum_k P_k \rho P_k$$

$p_k = \text{Tr} \rho P_k$, $\rho_k = P_k \rho P_k / p_k$
Measurement and Majorization

Initial quantum state ρ

Measurement $M = \{P_k\}$, $\sum_k P_k = I$, $P_k P_{k'} = \delta_{k k'} P_k$

State after unread measurement:

$$\rho' = \sum_k p_k \rho_k = \sum_k P_k \rho P_k$$

$$p_k = \text{Tr} \rho P_k, \quad \rho_k = P_k \rho P_k / p_k$$

Fundamental property: $\rho' \prec \rho$
Measurement and Majorization

Initial quantum state ρ

Measurement $M = \{P_k\}, \sum_k P_k = I, P_k P_{k'} = \delta_{kk'} P_k$

State after unread measurement:

\[
\rho' = \sum_k p_k \rho_k = \sum_k P_k \rho P_k
\]

$p_k = \text{Tr} \rho P_k, \quad \rho_k = P_k \rho P_k / p_k$

Fundamental property: $\rho' \prec \rho$

Implies

\[
S_f(\rho') \geq S_f(\rho) \quad \forall S_f
\]
Measurement and Majorization

Initial quantum state ρ

Measurement $M = \{P_k\}$, $\sum_k P_k = I$, $P_k P_{k'} = \delta_{kk'} P_k$

State after unread measurement:

$$\rho' = \sum_k p_k \rho_k = \sum_k P_k \rho P_k$$

$p_k = \text{Tr} \rho P_k$, $\rho_k = P_k \rho P_k / p_k$

Fundamental property: $\rho' \prec \rho$

Implies

$$S_f(\rho') \geq S_f(\rho) \quad \forall S_f$$

Increase of von Neumann entropy just a particular case
Information loss by unread measurement
Information loss by unread measurement

\[I_f^M(\rho) = S_f(\rho') - S_f(\rho) \]
Information loss by unread measurement

\[I^M_f(\rho) = S_f(\rho') - S_f(\rho) \]

with \(S_f(\rho) = \text{Tr} \ f(\rho) \) generalized entropic form

RR-NC-LC PRA 82 (2010)
Information loss by unread measurement

\[I^M_f(\rho) = S_f(\rho') - S_f(\rho) \]

with \(S_f(\rho) = \text{Tr} f(\rho) \) generalized entropic form

RR-NC-LC PRA 82 (2010)

\(\rho' \prec \rho \) implies \(I^M_f(\rho) \geq 0 \ \forall \ S_f \)
Information loss by unread measurement

\[I_f^M(\rho) = S_f(\rho') - S_f(\rho) \]

with \(S_f(\rho) = \text{Tr} f(\rho) \) generalized entropic form

RR-NC-LC PRA 82 (2010)

\(\rho' \prec \rho \) implies \(I_f^M(\rho) \geq 0 \forall S_f \) with \(I_f^M(\rho) = 0 \) iff \(\rho' = \rho \)
Information loss by unread measurement

\[I^M_f(\rho) = S_f(\rho') - S_f(\rho) \]

with \(S_f(\rho) = \text{Tr} f(\rho) \) generalized entropic form

RR-NC-LC PRA 82 (2010)

\(\rho' \prec \rho \) implies \(I^M_f(\rho) \geq 0 \forall S_f \) with \(I^M_f(\rho) = 0 \) iff \(\rho' = \rho \)

Special cases:
Information loss by unread measurement

\[I^M_f(\rho) = S_f(\rho') - S_f(\rho) \]

with \(S_f(\rho) = \text{Tr} f(\rho) \) generalized entropic form

RR-NC-LC PRA 82 (2010)

\(\rho' \prec \rho \) implies \(I^M_f(\rho) \geq 0 \ \forall \ S_f \) with \(I^M_f(\rho) = 0 \) iff \(\rho' = \rho \)

Special cases:

Von Neumann entropy \((S_f(\rho) = -\text{Tr} \rho \log \rho)\):

\[I^M_{1}(\rho) = \text{Tr} \rho (\log \rho - \log \rho') = S(\rho || \rho') \]
Information loss by unread measurement

\[I^M_f(\rho) = S_f(\rho') - S_f(\rho) \]

with \(S_f(\rho) = \text{Tr}(f(\rho)) \) generalized entropic form

RR-NC-LC PRA 82 (2010)

\(\rho' \prec \rho \) implies \(I^M_f(\rho) \geq 0 \) \(\forall S_f \) with \(I^M_f(\rho) = 0 \) iff \(\rho' = \rho \)

Special cases:

Von Neumann entropy \((S_f(\rho) = -\text{Tr}(\rho \log \rho)) \):

\[I^M_1(\rho) = \text{Tr}(\rho(\log \rho - \log \rho')) = S(\rho\|\rho') \]

Linear entropy \((S_f(\rho) = \text{Tr}(\rho - \rho^2)) \):

\[I^M_2(\rho) = \text{Tr}(\rho^2 - \rho'^2) = \|\rho - \rho'\|^2 \]
Local measurement in bipartite system
Local measurement in bipartite system
Local measurement in bipartite system

Initial state ρ_{AB}
Local measurement in bipartite system

Initial state ρ_{AB}

$M_B = \{ I_A \otimes P_j^B \}$
Local measurement in bipartite system

Initial state ρ_{AB}

$M_B = \{I_A \otimes P_j^B\}$

State after unread measurement: $\rho'_{AB} = \sum_j p_j \rho_{A/j} \otimes P_j^B$
Local measurement in bipartite system

Initial state ρ_{AB}

$M_B = \{ I_A \otimes P_j^B \}$

State after unread measurement: $\rho'_{AB} = \sum_j p_j \rho_{A/j} \otimes P_j^B$

$p_j = \text{Tr} (\rho_{AB} I_A \otimes P_j^B)$, $\rho_{A/j} \propto \text{Tr}_B (\rho_{AB} I_A \otimes P_j^B)$
Local measurement in bipartite system

Initial state ρ_{AB}

$M_B = \{ I_A \otimes P^B_j \}$

State after unread measurement: $\rho'_{AB} = \sum_j p_j \rho_{A/j} \otimes P^B_j$

$p_j = \text{Tr} (\rho_{AB} I_A \otimes P^B_j), \quad \rho_{A/j} \propto \text{Tr}_B (\rho_{AB} I_A \otimes P^B_j)$

Information loss:

$I^M_B (\rho_{AB}) = S_f (\rho'_{AB}) - S_f (\rho_{AB})$
Local measurement in bipartite system

Initial state ρ_{AB}

$M_B = \{ I_A \otimes P^B_j \}$

State after unread measurement: $\rho'_{AB} = \sum_j p_j \rho_{A/j} \otimes P^B_j$

$p_j = \text{Tr} (\rho_{AB} I_A \otimes P^B_j)$, $\rho_{A/j} \propto \text{Tr}_B (\rho_{AB} I_A \otimes P^B_j)$

Information loss: $I^M_B (\rho_{AB}) = S_f (\rho'_{AB}) - S_f (\rho_{AB})$

Minimum Information loss due to unread local measurement:
Local measurement in bipartite system

Initial state ρ_{AB}

$M_B = \{ I_A \otimes P^B_j \}$

State after unread measurement:

$\rho'_{AB} = \sum_j p_j \rho_{A/j} \otimes P^B_j$

$p_j = Tr(\rho_{AB} I_A \otimes P^B_j)$, $\rho_{A/j} \propto Tr_B(\rho_{AB} I_A \otimes P^B_j)$

Information loss:

$I_{MB}^M(\rho_{AB}) = S_f(\rho'_{AB}) - S_f(\rho_{AB})$

Minimum Information loss due to unread local measurement:

$I_f^B(\rho_{AB}) = \text{Min}_{M_B} I_{MB}^M(\rho_{AB})$
Local measurement in bipartite system

Initial state ρ_{AB}

$M_B = \{I_A \otimes P^B_j\}$

State after unread measurement: $\rho'_{AB} = \sum_j p_j \rho_{A/j} \otimes P^B_j$

$p_j = \text{Tr}(\rho_{AB} I_A \otimes P^B_j)$, $\rho_{A/j} \propto \text{Tr}_B(\rho_{AB} I_A \otimes P^B_j)$

Information loss: $I^{M_B}_f(\rho_{AB}) = S_f(\rho'_{AB}) - S_f(\rho_{AB})$

Minimum Information loss due to unread local measurement:

$I^B_f(\rho_{AB}) = \min_{M_B} I^{M_B}_f(\rho_{AB})$

$I^B_f(\rho_{AB}) \geq 0$
Local measurement in bipartite system

Initial state ρ_{AB}

$M_B = \{ I_A \otimes P_j^B \}$

State after unread measurement: $\rho'_{AB} = \sum_j p_j \rho_{A/j} \otimes P_j^B$

$p_j = \text{Tr} (\rho_{AB} I_A \otimes P_j^B)$, \hspace{1cm} $\rho_{A/j} \propto \text{Tr}_B (\rho_{AB} I_A \otimes P_j^B)$

Information loss: $I^{MB}_f (\rho_{AB}) = S_f (\rho'_{AB}) - S_f (\rho_{AB})$

Minimum Information loss due to unread local measurement:

$I^{B}_f (\rho_{AB}) = \text{Min}_{M_B} I^{MB}_f (\rho_{AB})$

$I^{B}_f (\rho_{AB}) \geq 0 \text{ with } I^{B}_f (\rho_{AB}) = 0 \text{ iff } \rho_{AB} = \sum_j p_j \rho_{A/j} \otimes P_j^B$
Local measurement in bipartite system

Initial state ρ_{AB}

$M_B = \{I_A \otimes P^B_j\}$

State after unread measurement: $\rho'_{AB} = \sum_j p_j \rho_{A/j} \otimes P^B_j$

$p_j = \text{Tr}(\rho_{AB} I_A \otimes P^B_j)$, $\rho_{A/j} \propto \text{Tr}_B(\rho_{AB} I_A \otimes P^B_j)$

Information loss: $I^{M_B}_f(\rho_{AB}) = S_f(\rho'_{AB}) - S_f(\rho_{AB})$

Minimum Information loss due to unread local measurement:

$I^B_f(\rho_{AB}) = \text{Min}_{M_B} I^{M_B}_f(\rho_{AB})$

$I^B_f(\rho_{AB}) \geq 0$ with $I^B_f(\rho_{AB}) = 0$ iff $\rho_{AB} = \sum_j p_j \rho_{A/j} \otimes P^B_j$

I^B_f Generalized entropic measure of quantum correlations

RR NC LC PRA 82 (2010)
Pure states
Pure states

If $\rho^2_{AB} = \rho_{AB} \Rightarrow I^B_f(\rho_{AB}) = E_f(A, B)$
Pure states

If $\rho_{AB}^2 = \rho_{AB} \Rightarrow I_f^B(\rho_{AB}) = E_f(A, B)$

$E_f(A, B) = S_f(\rho_A) = S_f(\rho_B)$ generalized entanglement entropy

$\rho_A = \text{Tr}_B \rho_{AB}, \rho_B = \text{Tr}_A \rho_{AB}$
Pure states

If \(\rho_{AB}^2 = \rho_{AB} \Rightarrow I_f^B(\rho_{AB}) = E_f(A, B) \)

\(E_f(A, B) = S_f(\rho_A) = S_f(\rho_B) \) generalized entanglement entropy

\(\rho_A = \text{Tr}_B \rho_{AB}, \rho_B = \text{Tr}_A \rho_{AB} \)

Von Neumann case: \(E_f(A, B) = S(\rho_A) \) std. entangl. entropy
Pure states

If \(\rho_{AB}^2 = \rho_{AB} \) \(\Rightarrow \) \(I_f^B(\rho_{AB}) = E_f(A, B) \)

\(E_f(A, B) = S_f(\rho_A) = S_f(\rho_B) \) generalized entanglement entropy
\(\rho_A = \text{Tr}_B \rho_{AB}, \rho_B = \text{Tr}_A \rho_{AB} \)

Von Neumann case: \(E_f(A, B) = S(\rho_A) \) std. entangl. entropy
Linear entropy case: \(E_f(A, B) = C^2(A, B) = 2(1 - \text{Tr} \rho_A^2) \) (squared concurrence)
Pure states

If \(\rho_{AB}^2 = \rho_{AB} \) \(\Rightarrow I_f^B(\rho_{AB}) = E_f(A, B) \)

\[E_f(A, B) = S_f(\rho_A) = S_f(\rho_B) \text{ generalized entanglement entropy} \]

\[\rho_A = \text{Tr}_B \rho_{AB}, \rho_B = \text{Tr}_A \rho_{AB} \]

Von Neumann case: \(E_f(A, B) = S(\rho_A) \) std. entangl. entropy

Linear entropy case: \(E_f(A, B) = C^2(A, B) = 2(1 - \text{Tr} \rho_A^2) \)
(squared concurrence)

Universal least disturbing local measurement: Schmidt basis
Pure states

If $\rho_{AB}^2 = \rho_{AB} \Rightarrow I_f^B(\rho_{AB}) = E_f(A, B)$

$E_f(A, B) = S_f(\rho_A) = S_f(\rho_B)$ generalized entanglement entropy

$\rho_A = \text{Tr}_B \rho_{AB}, \rho_B = \text{Tr}_A \rho_{AB}$

Von Neumann case: $E_f(A, B) = S(\rho_A)$ std. entangl. entropy

Linear entropy case: $E_f(A, B) = C^2(A, B) = 2(1 - \text{Tr} \rho_A^2)$ (squared concurrence)

Universal least disturbing local measurement: Schmidt basis

$\rho_{AB} = |\Psi_{AB}\rangle \langle \Psi_{AB}|, |\Psi_{AB}\rangle = \sum_k \sqrt{p_k} |k_A\rangle |k_B\rangle \Rightarrow M_B = \{P_k^B\}$
Pure states

If \(\rho_{AB}^2 = \rho_{AB} \Rightarrow I_{f}^B(\rho_{AB}) = E_f(A, B) \)

\(E_f(A, B) = S_f(\rho_A) = S_f(\rho_B) \) generalized entanglement entropy

\(\rho_A = \text{Tr}_B \rho_{AB}, \rho_B = \text{Tr}_A \rho_{AB} \)

Von Neumann case: \(E_f(A, B) = S(\rho_A) \) std. entangl. entropy

Linear entropy case: \(E_f(A, B) = C^2(A, B) = 2(1 - \text{Tr} \rho_A^2) \) (squared concurrence)

Universal least disturbing local measurement: Schmidt basis

\(\rho_{AB} = |\Psi_{AB}\rangle \langle \Psi_{AB}|, |\Psi_{AB}\rangle = \sum_k \sqrt{p_k} |k_A\rangle |k_B\rangle \Rightarrow M_B = \{ P_k^B \} \)

\(\rho'_{AB} = \sum_k p_k P_k^A \otimes P_k^B \) least mixed state after local measurement
Mixed states
Mixed states
Mixed states

\[I_f^B (\rho_{AB}) = 0 \iff \rho_{AB} \text{ classically correlated (from } B) \]
Mixed states

\[I_f^B (\rho_{AB}) = 0 \iff \rho_{AB} \text{ classically correlated (from } B) \]

Vanishes for the same states as the Quantum Discord
Mixed states

\[I_f^B(\rho_{AB}) = 0 \iff \rho_{AB} \text{ classically correlated (from } B) \]

Vanishes for the same states as the Quantum Discord

\[\rho_{AB} \text{ separable } \Rightarrow I_f^B(\rho_{AB}) = 0 \]
Mixed states

\[I_f^B(\rho_{AB}) = 0 \iff \rho_{AB} \text{ classically correlated (from } B) \]

Vanishes for the same states as the Quantum Discord

\[\rho_{AB} \text{ separable } \not\Rightarrow I_f^B(\rho_{AB}) = 0 \]

\[(\rho_{AB} \text{ separable } \iff \rho_{AB} = \sum_\alpha q_\alpha \rho^\alpha_A \otimes \rho^\alpha_B, q_\alpha > 0) \]

Minimum of \(I_f^{MB} \) no longer universal in general
Mixed states

\[I_f^B(\rho_{AB}) = 0 \iff \rho_{AB} \text{ classically correlated (from } B) \]

Vanishes for the same states as the Quantum Discord

\[\rho_{AB} \text{ separable } \Rightarrow I_f^B(\rho_{AB}) = 0 \]

\((\rho_{AB} \text{ separable } \iff \rho_{AB} = \sum_\alpha q_\alpha \rho_\alpha^A \otimes \rho_\alpha^B, q_\alpha > 0) \)

Minimum of \(I_f^{MB} \) no longer universal in general

\[I_f^B(\rho_{AB}) \) not an upper bound to \(E_f(A, B) \) in general
Mixed states

\[I_f^B(\rho_{AB}) = 0 \iff \rho_{AB} \text{ classically correlated (from } B) \]

Vanishes for the same states as the Quantum Discord

\[\rho_{AB} \text{ separable } \not\Rightarrow I_f^B(\rho_{AB}) = 0 \]

\[(\rho_{AB} \text{ separable } \iff \rho_{AB} = \sum_\alpha q_\alpha \rho^\alpha_A \otimes \rho^\alpha_B, q_\alpha > 0) \]

Minimum of \(I_f^{MB} \) no longer universal in general

\(I_f^B(\rho_{AB}) \) not an upper bound to \(E_f(A, B) \) in general

Generalized entanglement of formation:

\[E_f(A, B) = \text{Min} \sum_\alpha q_\alpha E_f(|\Psi^\alpha_{AB}\rangle) / \rho_{AB} = \sum_\alpha q_\alpha |\Psi^\alpha_{AB}\rangle \langle \Psi^\alpha_{AB}|, q_\alpha \geq 0 \]
Other local measurements
Other local measurements

\[I_f^A(\rho_{AB}) = \operatorname{Min}_{M_A} I_f^{M_A}(\rho_{AB}) \quad M_A = \{ P_i^A \otimes I_B \} \]
Other local measurements

\[I_f^A(\rho_{AB}) = \min_{M_A} I_f^{MA}(\rho_{AB}) \quad M_A = \{P_i^A \otimes I_B\} \]

\[I_f^{AB}(\rho_{AB}) = \min_{M_{AB}} I_f^{M_{AB}}(\rho_{AB}) \quad M_{AB} = \{P_i^A \otimes P_j^B\} \]
Other local measurements

\[I_A^f(\rho_{AB}) = \min_{M_A} I_{f}^{M_A}(\rho_{AB}) \quad M_A = \{P_i^A \otimes I_B\} \]

\[I_{AB}^f(\rho_{AB}) = \min_{M_{AB}} I_{f}^{M_{AB}}(\rho_{AB}) \quad M_{AB} = \{P_i^A \otimes P_j^B\} \]

\[I_{AB}^f(\rho_{AB}) \geq 0, \text{ with } I_{AB}^f(\rho_{AB}) = 0 \text{ iff } \rho_{AB} = \sum_{i,j} p_{ij} P_i^A \otimes P_j^B \]
Other local measurements

\[I_f^A(\rho_{AB}) = \min_{M_A} I_f^{MA}(\rho_{AB}) \quad M_A = \{P_i^A \otimes I_B\} \]

\[I_f^{AB}(\rho_{AB}) = \min_{M_{AB}} I_f^{MAB}(\rho_{AB}) \quad M_{AB} = \{P_i^A \otimes P_j^B\} \]

\[I_f^{AB}(\rho_{AB}) \geq 0, \text{ with } I_f^{AB}(\rho_{AB}) = 0 \text{ iff } \rho_{AB} = \sum_{i,j} p_{ij} P_i^A \otimes P_j^B \]

classically correlated state
Other local measurements

\[I_f^A(\rho_{AB}) = \text{Min}_{M_A} I_f^{M^A}(\rho_{AB}) \quad M_A = \{P_i^A \otimes I_B\} \]

\[I_f^{AB}(\rho_{AB}) = \text{Min}_{M_{AB}} I_f^{M_{AB}}(\rho_{AB}) \quad M_{AB} = \{P_i^A \otimes P_j^B\} \]

\[I_f^{AB}(\rho_{AB}) \geq 0, \text{ with } I_f^{AB}(\rho_{AB}) = 0 \text{ iff } \rho_{AB} = \sum_{i,j} p_{ij} P_i^A \otimes P_j^B \]

classically correlated state

Pure states: \[I^A_f = I^{AB}_f = I^B_f = E_f(A, B) \]
Other local measurements

\[I^A_f(\rho_{AB}) = \underset{M_A}{\text{Min}} I^M_A(\rho_{AB}) \quad M_A = \{ P_i^A \otimes I_B \} \]

\[I^{AB}_f(\rho_{AB}) = \underset{M_{AB}}{\text{Min}} I^{MAB}_f(\rho_{AB}) \quad M_{AB} = \{ P_i^A \otimes P_j^B \} \]

\[I^{AB}_f(\rho_{AB}) \geq 0, \text{ with } I^{AB}_f(\rho_{AB}) = 0 \text{ iff } \rho_{AB} = \sum_{i,j} p_{ij} P_i^A \otimes P_j^B \]

classically correlated state

Pure states: \[I^A_f = I^{AB}_f = I^B_f = E_f(A, B) \]

All coincident with (generalized) entanglement entropy
Other local measurements

\[I_f^A(\rho_{AB}) = \min_{M_A} I_f^{MA}(\rho_{AB}) \]
\[M_A = \{P_i^A \otimes I_B\} \]

\[I_f^{AB}(\rho_{AB}) = \min_{M_{AB}} I_f^{MAB}(\rho_{AB}) \]
\[M_{AB} = \{P_i^A \otimes P_j^B\} \]

\[I_f^{AB}(\rho_{AB}) \geq 0, \text{ with } I_f^{AB}(\rho_{AB}) = 0 \text{ iff } \rho_{AB} = \sum_{i,j} p_{ij} P_i^A \otimes P_j^B \]

classically correlated state

Pure states: \[I_f^A = I_f^{AB} = I_f^B = E_f(A, B) \]

All coincident with (generalized) entanglement entropy

Mixed states: \[I_f^{AB} \geq I_f^B, I_f^{AB} \geq I_f^A, I_f^A \neq I_f^B \text{ in general} \]
Special cases:
Special cases:
Special cases:

von Neumann entropy \((S_f = S)\):

\[
I_1^B(\rho_{AB}) = \min_M I_1^{MB}(\rho_{AB}) = \min_{\rho_{AB}^d} S(\rho_{AB} || \rho_{AB}^d)
\]
Special cases:

von Neumann entropy ($S_f = S$):

$$I^B_1(\rho_{AB}) = \min_{M_B} I^M_1(\rho_{AB}) = \min_{\rho^d_{AB}} S(\rho_{AB} || \rho^d_{AB})$$

ρ^d_{AB} arbitrary state of the form $\sum_j q_j \rho_{A/j} \otimes P^B_j$.
Special cases:

von Neumann entropy ($S_f = S$):

$$I_1^B(\rho_{AB}) = \min_M I_1^{MB}(\rho_{AB}) = \min_{\rho_{AB}^d} S(\rho_{AB}||\rho_{AB}^d)$$

ρ_{AB}^d arbitrary state of the form $\sum_j q_j \rho_{A/j} \otimes P_j^B$.

I_1^B, I_1^{MAB} coincide with “quantum discord” of Vedral et al, PRL 104, (2010)
Special cases:

von Neumann entropy ($S_f = S$):

$$I^B_1(\rho_{AB}) = \min_{M_B} I^{MB}_1(\rho_{AB}) = \min_{\rho^d_{AB}} S(\rho_{AB} || \rho^d_{AB})$$

ρ^d_{AB} arbitrary state of the form $\sum_j q_j \rho_{A/j} \otimes P^B_j$.

I^B_1, I^{MB}_1 coincide with “quantum discord” of Vedral et al, PRL 104, (2010)

Original Quantum Discord (Ollivier and Zurek 2001):

$$D^B = \min_{M_B} [S(A|B_{MB}) - S(A|B)]$$

$$= \min_{M_B} [I^B_1(\rho_{AB}) - I^B_1(\rho_{B})]$$
Special cases:

von Neumann entropy ($S_f = S$):

$$I_1^B(\rho_{AB}) = \min_{M_B} I_1^{MB}(\rho_{AB}) = \min_{\rho_{AB}^d} S(\rho_{AB}||\rho_{AB}^d)$$

ρ_{AB}^d arbitrary state of the form $\sum_j q_j \rho_{A/j} \otimes P_j^B$.

I_1^B, I_1^{MAB} coincide with “quantum discord” of Vedral et al, PRL 104, (2010)

Original Quantum Discord (Ollivier and Zurek 2001):

$$D_B = \min_{M_B} [S(A|B_{MB}) - S(A|B)]$$

$$= \min_{M_B} [I_1^B(\rho_{AB}) - I_1^B(\rho_B)]$$

Positivity of D_B based essentially on von Neumann entropy
Special cases:
Special cases:

Linear entropy ($S_f = S_2$):

\[
I_2^B (\rho_{AB}) = \min_{M_B} I_2^{MB} (\rho_{AB}) = \min_{\rho_{dAB}^{\rho_{dAB}}} ||\rho_{AB} - \rho_{AB}^d||^2
\]
Special cases:

Linear entropy \((S_f = S_2)\):

\[
I_2^B(\rho_{AB}) = \min_{M_B} I_2^{MB}(\rho_{AB}) = \min_{\rho^d_{AB}} ||\rho_{AB} - \rho^d_{AB}||^2
\]

Special cases:

Linear entropy ($S_f = S_2$):

$$I^B_2(\rho_{AB}) = \min_{M_B} I^M_2(\rho_{AB}) = \min_{\rho^d_{AB}} \| \rho_{AB} - \rho^d_{AB} \|^2$$

I^B_2 suitable for analytic evaluation
Special cases:

Linear entropy ($S_f = S_2$):

$$I_2^B(\rho_{AB}) = \min_{M_B} I_2^{MB}(\rho_{AB}) = \min_{\rho_{dAB}^d} ||\rho_{AB} - \rho_{dAB}^d||^2$$

I_2^B suitable for analytic evaluation

Closed expression for any state of two qubits available
Example: Pure state + max. mixed state
Example: Pure state + max. mixed state

\[\rho_{AB} = x|\Psi_{AB}\rangle\langle\Psi_{AB}| + \frac{1-x}{d} I_A \otimes I_B \]

\[|\Psi_{AB}\rangle = \sum_k \sqrt{p_k} |k_A\rangle |k_B\rangle \]
Example: Pure state + max. mixed state

\[\rho_{AB} = x|\Psi_{AB}\rangle \langle \Psi_{AB}| + \frac{1-x}{d} I_A \otimes I_B \]

\[|\Psi_{AB}\rangle = \sum_k \sqrt{p_k} |k_A\rangle |k_B\rangle \]

Universal minimum of \(I_f^B, I_f^A \) and \(I_f^{AB} \): Schmidt basis
Example: Pure state + max. mixed state

\[\rho_{AB} = x|\Psi_{AB}\rangle\langle\Psi_{AB}| + \frac{1-x}{d}I_A \otimes I_B \]

\[|\Psi_{AB}\rangle = \sum_k \sqrt{p_k} |k_A\rangle|k_B\rangle \]

Universal minimum of \(I_f^B, I_f^A \) and \(I_f^{AB} \): Schmidt basis

\[\rho'_{AB} = x \sum_k p_k P_k^A \otimes P_k^B + \frac{1-x}{d}I_A \otimes I_B \]

Least mixed state after local measurement!
Example: Pure state + max. mixed state

\[\rho_{AB} = x |\Psi_{AB}\rangle \langle \Psi_{AB}| + \frac{1-x}{d} I_A \otimes I_B \]

\[|\Psi_{AB}\rangle = \sum_k \sqrt{p_k} |k_A\rangle |k_B\rangle \]

Universal minimum of \(I_f^B \), \(I_f^A \) and \(I_f^{AB} \): Schmidt basis

\[\rho'_{AB} = x \sum_k p_k P_k^A \otimes P_k^B + \frac{1-x}{d} I_A \otimes I_B \]

Least mixed state after local measurement!

Leads to analytic evaluation of \(I_f^\nu \), with \(I_f^B = I_f^A = I_f^{AB} \)
Example: Pure state + max. mixed state

\[\rho_{AB} = x|\Psi_{AB}\rangle\langle \Psi_{AB}| + \frac{1-x}{d} I_A \otimes I_B \]

\[|\Psi_{AB}\rangle = \sum_k \sqrt{p_k} |k_A\rangle |k_B\rangle \]

Universal minimum of \(I_f^B, I_f^A \) and \(I_f^{AB} \): Schmidt basis

\[\rho'_{AB} = x \sum_k p_k P_k^A \otimes P_k^B + \frac{1-x}{d} I_A \otimes I_B \]

Least mixed state after local measurement!

Leads to analytic evaluation of \(I_f^\nu \), with \(I_f^B = I_f^A = I_f^{AB} \)

universal quadratic increase for \(x \to 0 \):
Example: Pure state + max. mixed state

\[\rho_{AB} = x|\Psi_{AB}\rangle\langle\Psi_{AB}| + \frac{1-x}{d} I_A \otimes I_B \]

\[|\Psi_{AB}\rangle = \sum_k \sqrt{p_k}|k_A\rangle|k_B\rangle \]

Universal minimum of \(I_f^B, I_f^A \) and \(I_f^{AB} \): Schmidt basis

\[\rho_{AB}' = x \sum_k p_k P_k^A \otimes P_k^B + \frac{1-x}{d} I_A \otimes I_B \]

Least mixed state after local measurement!

Leads to analytic evaluation of \(I_f^\nu \), with \(I_f^B = I_f^A = I_f^{AB} \)

universal quadratic increase for \(x \rightarrow 0 \):

\[I_f^\nu(x) \approx \frac{1}{2} x^2 |f''\left(\frac{1}{n}\right)|\left(1 - \sum_k p_k^2\right) \]
Example: Pure state + max. mixed state

\[\rho_{AB} = x |\Psi_{AB}\rangle \langle \Psi_{AB}| + \frac{1-x}{d} I_A \otimes I_B \]

\[|\Psi_{AB}\rangle = \sum_k \sqrt{p_k} |k_A\rangle |k_B\rangle \]

Universal minimum of \(I_f^B \), \(I_f^A \) and \(I_f^{AB} \): Schmidt basis

\[\rho'_{AB} = x \sum_k p_k P_k^A \otimes P_k^B + \frac{1-x}{d} I_A \otimes I_B \]

Least mixed state after local measurement!

Leads to analytic evaluation of \(I^\nu_f \), with \(I_f^B = I_f^A = I_f^{AB} \)

Universal quadratic increase for \(x \rightarrow 0 \):

\[I_f^\nu(x) \approx \frac{1}{2} x^2 |f''(\frac{1}{n})|(1 - \sum p_k^2) \]

Entanglement needs finite threshold: \(\rho_{AB} \) separable for \(x < \frac{1}{d-1} \)

RR NC LC PRA 2010
Example: Pure state + noise

\[\rho_{AB} = x|\Psi_{AB}\rangle\langle\Psi_{AB}| + \frac{1-x}{d}I \]

\[|\Psi_{AB}\rangle = \sqrt{p}|00\rangle + \sqrt{1-p}|11\rangle \]
Example: Pure state + noise

$$\rho_{AB} = x |\Psi_{AB}\rangle \langle \Psi_{AB}| + \frac{1-x}{d} I$$

$$|\Psi_{AB}\rangle = \sqrt{p}|00\rangle + \sqrt{1-p}|11\rangle$$
Example: Pure state + noise

\[
\rho_{AB} = x|\Psi_{AB}\rangle\langle\Psi_{AB}| + \frac{1-x}{d}I
\]

\[
|\Psi_{AB}\rangle = \sqrt{p}|00\rangle + \sqrt{1-p}|11\rangle
\]

Linear entropy case:

\[
I_2(x) \geq C^2(x) \forall x
\]
Example: Pure state + noise

\[\rho_{AB} = x |\Psi_{AB}\rangle \langle \Psi_{AB}| + \frac{1-x}{d} I \]

\[|\Psi_{AB}\rangle = \sqrt{p} |00\rangle + \sqrt{1-p} |11\rangle \]

Linear entropy case:

\[I_2(x) \geq C^2(x) \forall x \]

Von Neumann case:

\[I_1(x) \succeq E(x) \]
Example: Pure state + noise

$$\rho_{AB} = x|\Psi_{AB}\rangle\langle\Psi_{AB}| + \frac{1-x}{d} I$$

$$|\Psi_{AB}\rangle = \sqrt{p}|00\rangle + \sqrt{1-p}|11\rangle$$

Linear entropy case:

$$I_2(x) \geq C^2(x) \forall x$$

Von Neumann case:

$$I_1(x) \geq E(x)$$

$$S_q$$ case:

$$I_q(x) \geq E_q(x)$$ for $$q \in [1.27, 3.5]$$
Example: Decoherence of a Bell state
Example: Decoherence of a Bell state

\[
\rho_{AB} = \frac{1}{2} [\vert 00 \rangle \langle 00 \vert + \vert 11 \rangle \langle 11 \vert + z (\vert 00 \rangle \langle 11 \vert + \vert 11 \rangle \langle 00 \vert)]
\]

\[
= \frac{1+z}{2} \vert \Psi_+ \rangle \langle \Psi_+ \vert + \frac{1-z}{2} \vert \Psi_- \rangle \langle \Psi_- \vert, \quad \vert \Psi_\pm \rangle = \frac{\vert 00 \rangle \pm \vert 11 \rangle}{\sqrt{2}}
\]
Example: Decoherence of a Bell state

\[\rho_{AB} = \frac{1}{2} [|00><00| + |11><11| + z(|00><11| + |11><00|)] \]

\[= \frac{1+z}{2} |\Psi_+\rangle\langle\Psi_+| + \frac{1-z}{2} |\Psi_-\rangle\langle\Psi_-|, \quad |\Psi_\pm\rangle = \frac{|00\rangle \pm |11\rangle}{\sqrt{2}} \]

\[I_1(z) \leq E(z) \text{ but } I_2(z) = C^2(z) \]
Example: Decoherence of a Bell state

\[
\rho_{AB} = \frac{1}{2} [|00><00| + |11><11| + z(|00><11| + |11><00|)]
\]

\[
= \frac{1+z}{2} |\Psi_+\rangle\langle \Psi_+ | + \frac{1-z}{2} |\Psi_-\rangle\langle \Psi_- |, \quad |\Psi_\pm\rangle = \frac{|00\rangle \pm |11\rangle}{\sqrt{2}}
\]

\[
I_1(z) \leq E(z) \text{ but } I_2(z) = C^2(z)
\]

\[
I_q(z) \geq E_q(z) \text{ for } 2 < q < 3
\]
Mixture of non-orthogonal states
Mixture of non-orthogonal states

Aligned states of two spins $| \uparrow \downarrow \rangle = | \theta \theta \rangle$, $| \downarrow \uparrow \rangle = | - \theta - \theta \rangle$, with $| \theta \rangle = \exp[-i \theta s_y]| \uparrow \rangle$.
Mixture of non-orthogonal states

Aligned states of two spins $|\uparrow\uparrow\rangle = |\theta\theta\rangle$, $|\downarrow\downarrow\rangle = |\theta - \theta\rangle$, with $|\theta\rangle = \exp[-i\theta s_y]|\uparrow\rangle$

$$
\rho_{AB}(\theta) = \frac{1}{2} (|\theta\theta\rangle\langle\theta\theta| + |\theta - \theta\rangle\langle\theta - \theta|)
$$
Mixture of non-orthogonal states

Aligned states of two spins $|\uparrow\uparrow\rangle = |\theta\theta\rangle$, $|\downarrow\downarrow\rangle = |\theta - \theta\rangle$, with $|\theta\rangle = \exp[-i\theta s_y]|\uparrow\rangle$

$$\rho_{AB}(\theta) = \frac{1}{2}(|\theta\theta\rangle\langle\theta\theta| + |\theta - \theta\rangle\langle\theta - \theta|)$$

Represents pair state in finite XY spin arrays in the vicinity of transverse factorizing field
Mixture of non-orthogonal states

Aligned states of two spins $|\uparrow\uparrow\rangle = |\theta\theta\rangle$, $|\downarrow\downarrow\rangle = |\theta\theta\rangle$, with $|\theta\rangle = \exp[-i\theta s_y]|\uparrow\rangle$

$$\rho_{AB}(\theta) = \frac{1}{2} (|\theta\theta\rangle\langle\theta\theta| + |\theta - \theta\rangle\langle\theta - \theta|)$$

Represents pair state in finite XY spin arrays in the vicinity of transverse factorizing field

$\rho_{AB}(\theta)$ separable $\Rightarrow E[\rho_{AB}(\theta)] = 0 \forall \theta$. No entanglement
Mixture of non-orthogonal states

Aligned states of two spins $| \uparrow \uparrow \rangle = |\theta \theta \rangle$, $| \downarrow \downarrow \rangle = | - \theta - \theta \rangle$, with $|\theta \rangle = \exp[-i\theta s_y]| \uparrow \rangle$

$$\rho_{AB}(\theta) = \frac{1}{2}(|\theta \theta \rangle \langle \theta \theta | + | - \theta - \theta \rangle \langle -\theta - \theta |)$$

Represents pair state in finite XY spin arrays in the vicinity of transverse factorizing field $\rho_{AB}(\theta)$ separable $\Rightarrow E[\rho_{AB}(\theta)] = 0 \forall \theta$. No entanglement

However, I_f (and D) non-zero! $I_f[\rho_{AB}(\theta)] > 0$ for $\theta \in (0, \pi/2)$
Mixture of non-orthogonal states

Aligned states of two spins $|\uparrow\uparrow\rangle = |\theta\theta\rangle$, $|\downarrow\downarrow\rangle = |-\theta - \theta\rangle$,
with $|\theta\rangle = \exp[-i\theta s_y]|\uparrow\rangle$

$$\rho_{AB}(\theta) = \frac{1}{2} (|\theta\theta\rangle\langle\theta\theta| + |-\theta - \theta\rangle\langle-\theta - \theta|)$$

Represents pair state in finite XY spin arrays in the vicinity of transverse factorizing field

$\rho_{AB}(\theta)$ separable $\Rightarrow E[\rho_{AB}(\theta)] = 0 \forall \theta$. No entanglement

However, I_f (and D) non-zero! $I_f[\rho_{AB}(\theta)] > 0$ for $\theta \in (0, \pi/2)$

$I_f[\rho_{AB}(\theta)] = 0$ for $\theta = 0$ (product state) and $\theta = \pi/2$ (classically correlated state: $\langle -\theta | \theta \rangle = 0$ for $\theta = \pi/2$)

L. Ciliberti, N. Canosa, R. Rossignoli, PRA 2010
Mixture of non-orthogonal states
Mixture of non-orthogonal states
Mixture of non-orthogonal states

Discord as a function of angle θ

D is maximum for $\theta = \theta_m \approx 1, 15\pi/4$
Mixture of non-orthogonal states
Mixture of non-orthogonal states
Mixture of non-orthogonal states

Generalized information loss $I_f^B = I_q^B$ as a function of angle θ
Entanglement and Discord of spin pairs in a spin chain
Entanglement and Discord of spin pairs in a spin chain

Finite cyclic spin $1/2$ chain
with XY couplings in a transverse field
Entanglement and Discord of spin pairs in a spin chain

Finite cyclic spin 1/2 chain
with XY couplings in a transverse field
Entanglement and Discord of spin pairs in a spin chain

Finite cyclic spin $1/2$ chain
with XY couplings in a transverse field

$$H = b \sum_{i} s_{i}^{z} - \frac{1}{2} \sum_{i \neq j} (v_{ij}^{x} s_{i}^{x} s_{j}^{x} + v_{ij}^{y} s_{i}^{y} s_{j}^{y})$$

$$= b \sum_{i} s_{i}^{z} - \frac{1}{2} \sum_{i \neq j} [v_{ij}^{+} s_{i}^{+} s_{j}^{-} + \frac{1}{2} v_{ij}^{-} (s_{i}^{+} s_{j}^{+} + h.c.)]$$
Results
Results
Quantum Discord and entanglement of contiguous pairs vs. transverse field for first neighbor XY couplings

anisotropy $v_y/v_x = 1/2$ and $n = 100$ spins
Quantum Discord and entanglement of contiguous pairs vs. transverse field for first neighbor XY couplings

anisotropy $v_y/v_x = 1/2$ and $n = 100$ spins

L. Ciliberti, N. Canosa, R. Rossignoli, PRA 82 2010
Results
Results
Results

Discord and Entanglement of second neighbors in the same chain
Results
Results

![Graph showing the relationship between D/E and b/vx with labels n=100, L=3. The graph includes data for D and E. The x-axis represents b/vx ranging from 0 to 2, and the y-axis represents D/E ranging from 0 to 0.1.]
Results

Discord and entanglement of third neighbors in the same chain
Results

Discord and entanglement of third neighbors in the same chain
Results
Results
Results

Discord of spin pairs for separations \(L = 1, \ldots, 50 \)
in the same chain
Factorizing field
Factorizing field

At $b = b_s = \sqrt{v_yv_x}$, the chain exhibits a fully separable (and degenerate) exact GS: $|\Psi_0\rangle = |\pm \Theta\rangle$,

$|\Theta\rangle = |\theta\theta \ldots \theta\rangle$, $\cos \theta = \sqrt{v_y/v_x}$

b_s corresponds to last parity ($e^{i\pi S_z}$) GS transition.

Plays the role of a QPT in finite system.

$|\Theta\rangle$ breaks parity symmetry. Definite parity GS’s (RCM 2008):

$|\Theta^\pm\rangle = \frac{|\Theta\rangle \pm |\Theta\rangle}{\sqrt{2(1 \pm \langle\Theta|\Theta\rangle)}}$

Actual GS in the vicinity of $b = b_s$. Leads to

$\rho_{ij} = \text{Tr}_{i\bar{j}} |\Theta^\pm\rangle\langle\Theta^\pm| \approx \rho_{ij}(\theta)$
Conclusions

- I_f^ν: Generalized entropic measure of quantum correlations
Conclusions

- I_f^ν: Generalized entropic measure of quantum correlations
- Includes as particular cases von Neumann based and quadratic (geometric) Discords
Conclusions

- I_f^ν: Generalized entropic measure of quantum correlations
- Includes as particular cases von Neumann based and quadratic (geometric) Discords
- Rigorous concept of least disturbing local measurement
Conclusions

- I_f^ν: Generalized entropic measure of quantum correlations
- Includes as particular cases von Neumann based and quadratic (geometric) Discords
- Rigorous concept of least disturbing local measurement
- Coincides with generalized entanglement for pure states
Conclusions

- I_f^ν: Generalized entropic measure of quantum correlations
- Includes as particular cases von Neumann based and quadratic (geometric) Discords
- Rigorous concept of least disturbing local measurement
- Coincides with generalized entanglement for pure states
- As QD, it is qualitatively different for mixed states, vanishing just for classically correlated states. Can be non-zero even for states close to maximum disorder
Conclusions

- I_f^ν: Generalized entropic measure of quantum correlations
- Includes as particular cases von Neumann based and quadratic (geometric) Discords
- Rigorous concept of least disturbing local measurement
- Coincides with generalized entanglement for pure states
- As QD, it is qualitatively different for mixed states, vanishing just for classically correlated states. Can be non-zero even for states close to maximum disorder
- Spin chains: I_f^ν of pairs exhibits infinite range in the vicinity of factorizing field b_s. Confirmation of b_s as QPT for the finite chain
THANK YOU!

THANK YOU!
