Aging and Mortality 0000 000000 00000000000 Evolutionary Theory of Aging

Bit String Model

Conclusion

Aging and Evolution

Thadeu Penna

Instituto de Física UFF tjpp@if.uff.br

1 de agosto de 2007

Thadeu Penna Complexity in Living Systems

S	u	m	m	arv	1

Evolutionary Theory of Aging

Bit String Model

Conclusion

Aging and Mortality

- Definitions
- Facts
- Gompertz Law

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Instituto de Física UFF tjpp@if.uff.br

Summary	lary	Summ
---------	------	------

Evolutionary Theory of Aging

Bit String Model 0000 00000 Conclusion

Aging and Mortality

- Definitions
- Facts
- Gompertz Law
- 2 Evolutionary Theory of Aging
 - Theories
 - Special Cases of Aging

Thadeu Penna Complexity in Living Systems ▲□▶▲□▶▲□▶▲□▶ □ ● ●

Sı	ımm	ary

Evolutionary Theory of Aging

Bit String Model 0000 00000 Conclusion

Aging and Mortality

- Definitions
- Facts
- Gompertz Law
- 2 Evolutionary Theory of Aging
 - Theories
 - Special Cases of Aging
- 3 Bit String Model
 - Definition
 - Results

Instituto de Física UFF tjpp@if.uff.br

Sac

イロト イポト イヨト イヨト

Summary	lary	Summ
---------	------	------

Evolutionary Theory of Aging

Bit String Model 0000 00000

イロト イポト イヨト イヨト

Instituto de Física UFF tjpp@if.uff.br

Conclusion

Sac

Aging and Mortality

- Definitions
- Facts
- Gompertz Law
- 2 Evolutionary Theory of Aging
 - Theories
 - Special Cases of Aging
- 3 Bit String Model
 - Definition
 - Results

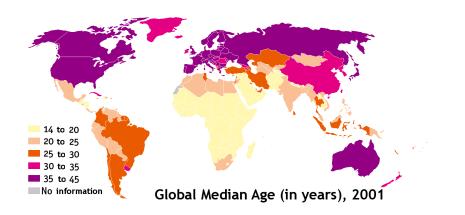
Summary	Aging and Mortality ••••• •••••• ••••••	Evolutionary Theory of Aging 0000 000000	Bit String Model 0000 00000	Conclusion
Definitions				

Aging

- Ageing or aging is the process of systems' deterioration with time.
- Senescence is the combination of processes of deterioration which follow the period of development of an organism. It is a biological concept.
- **Organismal senescence** is the **aging** of whole organisms. We will use both.
- Cellular senescence, or Hayflick limit, is when normal cells lose the ability to divide.
- Why do we age? Is aging the result of fundamental limitations that apply to all living things, or because a limited life span conveys some advantage?

Sac

Aging and Mortality


Evolutionary Theory of Aging

Bit String Model

Conclusion

Definitions

Median Age

Thadeu Penna Complexity in Living Systems Instituto de Física UFF tjpp@if.uff.br

Sac

< ロト < 同ト < 三ト</p>

SI				

Evolutionary Theory of Aging

Bit String Model

Conclusion

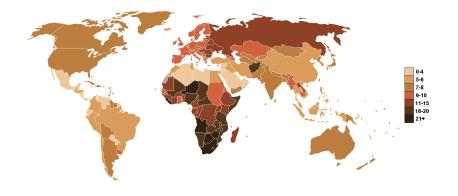
Definitions

How to Measure Aging

Mortality rate, or **death rate**, is a measure of the number of deaths (in general, or due to a specific cause) in some population, scaled to the size of that population, per unit time.

Thadeu Penna Complexity in Living Systems ▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへの

Aging and Mortality


Evolutionary Theory of Aging

Bit String Model 0000 00000

Conclusion

Definitions

Death Rate (deaths for 1,000)

▲ロト ▲ 聞 ト ▲ 臣 ト ▲ 臣 ト ▲ 回 ト ▲ 回 ト ▲ 回 ト ▲ 回 ト ▲ 臣 ト ▲ 臣 ト

Instituto de Física UFF tjpp@if.uff.br

Summary	Aging and Mortality	Evolutionary Theory of Aging	Bit String Model	Conclusion
	0000 00000 00000000000	0000	0000	

Facts

Many Causes

Rank	Cause	Total deaths	%
1.	Ischaemic heart	7,208	12.6
2.	Cerebrovascular	5,509	9.7
3.	Lower respiratory infections	3,884	6.8
4.	HIV/AIDS	2,777	4.9
5.	Chronic obstructive pulmonary	2,748	4.8
6.	Diarrheal diseases	1,798	3.2
7.	Tuberculosis	1,566	2.7
8.	Malaria	1,272	2.2
9.	Cancer of trachea/bronchus/lung	1,243	2.2
10.	Road traffic accidents	1,192	2.1

996

(日)

C	m	m	ar	

Facts

 Evolutionary Theory of Aging

Bit String Model

Conclusion

Transition of Mortality Rates by main causes in Japan

Thadeu Penna

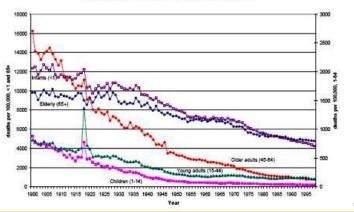
Instituto de Física UFF tjpp@if.uff.br

Dac

Complexity in Living Systems

C	m	m	ar	

Facts


Aging and Mortality

Evolutionary Theory of Aging

Bit String Model

Conclusion

Time Evolution of Mortality Rates by Age

Fig. 4: All Cause Mortality by Age

Thadeu Penna

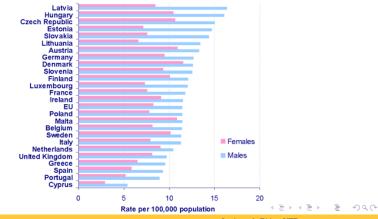
Complexity in Living Systems

Instituto de Física UFF tjpp@if.uff.br

Sac

Facts

Aging and Mortality


Evolutionary Theory of Aging

Bit String Model

Conclusion

Pancreatic Cancer in EU by Country and Sex

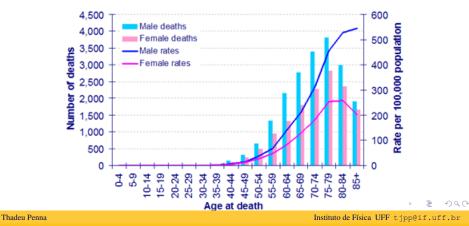
Figure 2.2: European age-standardised mortality rates, pancreatic cancer, by sex, EU, 2002

Thadeu Penna

Instituto de Física UFF tjpp@if.uff.br

Complexity in Living Systems

Evolutionary Theory of Aging


Bit String Model

Conclusion

Facts

Lung Cancer by Age and Sex

Figure 2.2: Number of deaths and age-specific mortality rates, lung cancer, by sex, UK, 2005

Complexity in Living Systems

C	m	m	ar	

Evolutionary Theory of Aging

Bit String Model

Conclusion

Facts

Aging and Physics

- Physicists do not die. We reach a maximum entropy state.
- Aging of Materials (glasses, mostly).
- We refer to biological aging.
- Aging depends on so many factors and causes.
- More a complicated system rather than a Complex system.
- So, what is the link ?

Thadeu Penna Complexity in Living Systems Levine de Périce LIER et la concernante

Instituto de Física UFF tjpp@if.uff.br

3

Evolutionary Theory of Aging

Bit String Model 0000 00000 Conclusion

Gompertz Law

Gompertz law

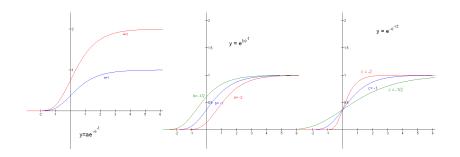
Benjamin Gompertz

Gompertz - 1779, 1865

$$N(t+dt) = rN(t)\log\left(\frac{K}{N(t)}\right)$$

- *r*, growth rate
- *K*, equilibrium size
- tested on populations since 1825.

Instituto de Física UFF tjpp@if.uff.br


Sac

Complexity in Living Systems

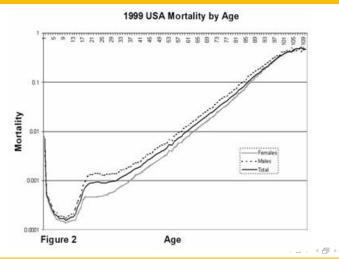
Thadeu Penna

Summary	Aging and Mortality	Evolutionary Theory of Aging	Bit String Model	Conclusion
	0000 000000 00000000000	0000	0000	

Gompertz Curves

・ロト・日本・モー・モー うへぐ

Instituto de Física UFF tjpp@if.uff.br


C	m	m	ar	

Evolutionary Theory of Aging

Bit String Model 0000 00000 Conclusion

Gompertz Law

USA mortality by age 1999

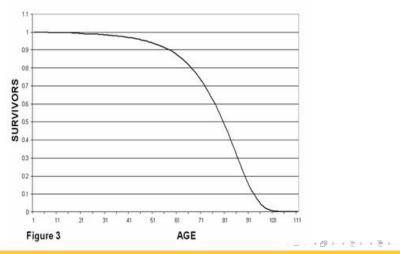
Thadeu Penna

Complexity in Living Systems

Instituto de Física UFF tjpp@if.uff.br

1

Sac


C	 	 arv	

 Evolutionary Theory of Aging

Bit String Model 0000 00000 Conclusion

Gompertz Law

USA survival rates by age 1999

Thadeu Penna

Complexity in Living Systems

Instituto de Física UFF tjpp@if.uff.br

э

900

C	m	m	ar	

Evolutionary Theory of Aging

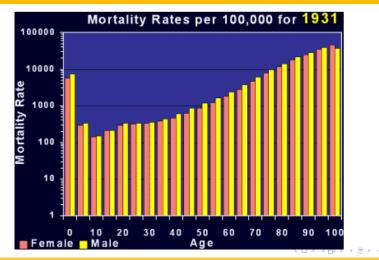
Bit String Model

Conclusion

USA mortality by age from 1901 to 1991

Thadeu Penna

Complexity in Living Systems


C	m	m	ar	

Evolutionary Theory of Aging

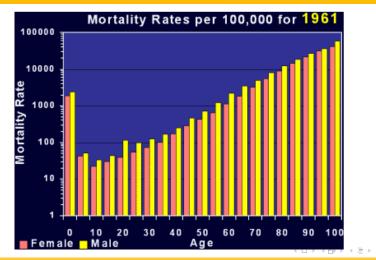
Bit String Model

Conclusion

USA mortality by age from 1901 to 1991

Thadeu Penna

Complexity in Living Systems


C	m	m	ar	

Evolutionary Theory of Aging

Bit String Model

Conclusion

USA mortality by age from 1901 to 1991

Thadeu Penna

Complexity in Living Systems


C	m	m	ar	

Evolutionary Theory of Aging

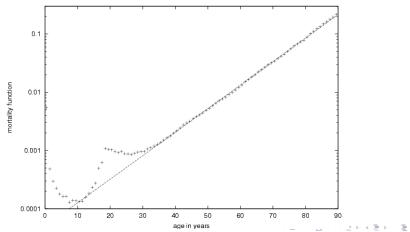
Bit String Model

Conclusion

USA mortality by age from 1901 to 1991

Thadeu Penna

Complexity in Living Systems

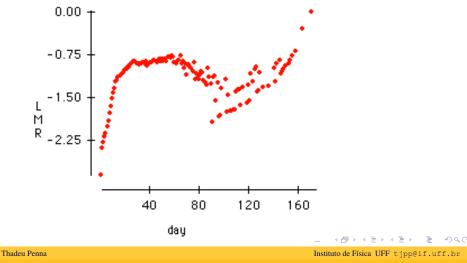

C	• •	 	0.0	× 7

 Evolutionary Theory of Aging

Bit String Model 0000 00000 Conclusion

Gompertz Law

German Mortality

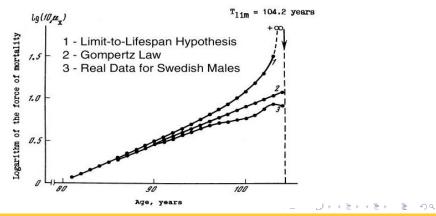

In[S(age -0.5)/S(age +0.5)] and 0.00005*exp(0.093*age)

Thadeu Penna

Complexity in Living Systems

Summary	Aging and Mortality 0000 000000 000000000000000000000000	Evolutionary Theory of Aging 0000 000000	Bit String Model 0000 00000	
Gompertz Law				

Medflies Mortality (10⁶, 80000, 70000), days (1,35,36).



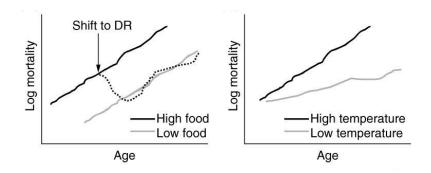
Complexity in Living Systems

Summary	Aging and Mortality	Evolutionary Theory of Aging	Bit String Model	Conclusion
	0000 000000 0000000000000	0000 000000	0000	
Gompertz Law				

The Oldest Old

Mortality at Advanced Ages

Instituto de Física UFF tjpp@if.uff.br


Gompertz Law

Evolutionary Theory of Aging

Bit String Model

Conclusion

Dietary restrictions and Temperature variations

Instituto de Física UFF tjpp@if.uff.br

Sac

< □ > < 同

Thadeu Penna

Complexity in Living Systems

Evolutionary Theory of Aging

Bit String Model

Conclusion

Gompertz Law

Australian on the 2nd War

Thadeu Penna

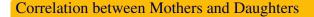
Complexity in Living Systems

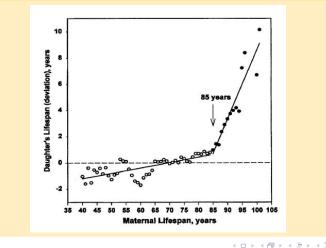
Summary	Aging and Mortality 0000 00000000000●0	Evolutionary Theory of Aging 0000 000000	Bit String Model 0000 00000	Conclusion
Gompertz Law				

Universality ?

- Lifespan is dependent on the species but is roughly the same on similar species.
- More important, the exponential behavior of the mortalities is quite robust. Although mortalities rates depend on the time, cultural aspects (including nutrition), sex, races, etc.; under very different circumstances, the mortality grows exponentially with age
- Notable exceptions are the "oldest old" survivors (humans and flies). There is no reliable statistics of other species.
- Evolution is a clue. Physicists know how to do it.

<ロト < 同ト < 回ト < 回ト = 三日


C	 	 arv	


Evolutionary Theory of Aging

Bit String Model

Conclusion

・ロマ・聞マ・聞マ・自マ ののの

Instituto de Física UFF tjpp@if.uff.br

Complexity in Living Systems

Thadeu Penna

C		111	ar	
0	u		 au	٢.

Evolutionary Theory of Aging

Bit String Model

Conclusion

Theories

Programmed Death

- **Programmed Death**, *Weismann* (1834 1914) : removing older members by programmed death provided more resources for the youngers (assumedly more evolved).
- Pro: it explained the inter-species differences in life span.
- Con: a trait has to be expressed in such a way that it affects survival or reproduction.
- if an individual die before the programmed death, it will not affect natural selection.

Instituto de Física UFF tjpp@if.uff.br

イロト 不得 トイヨト イヨト 二臣

		arv	

Evolutionary Theory of Aging

Bit String Model

Conclusion

Theories

Damage Accumulation

- damage to DNA
- poisonous byproduct of life processes
- limit on the number of divisions
- Aging is a defect

▲ロト ▲理 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - つへで

Instituto de Física UFF tjpp@if.uff.br

Aging and Mortality 0000 000000 000000000000000 Evolutionary Theory of Aging

Bit String Model

Conclusion

Theories

An Unsolved Problem on Biology

Mutation Accumulation Theory

- the force of natural selection decreases once an organism reaches an age where it has had some opportunity to reproduce.
- random mutations causing adverse aging characteristics.
- ties aging to sexual maturity and reproduction

イロト イポト イヨト

Instituto de Física UFF tjpp@if.uff.br

Aging and Mortality 0000 000000 0000000000000000 Evolutionary Theory of Aging

Bit String Model

Conclusion

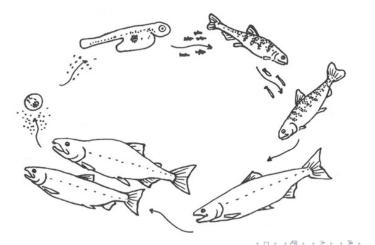
Theories

Antagonistic Pleiotropy Theory

- Pleiotropy, Natural Selection, and the Evolution of Senescence
- Pleiotropy: a single allele or form of a gene (see Genetics) may affect more than one trait.
- combined effect of many pleiotropic genes that each had a beneficial effect in an animal's youth but had an adverse side effect in older

age.

Instituto de Física UFF tjpp@if.uff.br


Aging and Mortality 0000 000000 00000000000 Evolutionary Theory of Aging

Bit String Model

Conclusion

Special Cases of Aging

Salmon Catastrophic Senescence

Instituto de Física UFF tjpp@if.uff.br

Sac

Aging and Mortality 0000 000000 00000000000 Evolutionary Theory of Aging

Bit String Model

Conclusion

Special Cases of Aging

Babys

Thadeu Penna Complexity in Living Systems

Summary

Evolutionary Theory of Aging

Bit String Model

Conclusion

Special Cases of Aging

Thadeu Penna Complexity in Living Systems Instituto de Física UFF tjpp@if.uff.br

프 > 프

990

Summary	Q	• •	111	111	2175	

Evolutionary Theory of Aging

Bit String Model

Conclusion

Special Cases of Aging

Old

Thadeu Penna Complexity in Living Systems

Instituto de Física UFF tjpp@if.uff.br

590

Summary

Evolutionary Theory of Aging

Bit String Model

Conclusion

Special Cases of Aging

Instituto de Física UFF tjpp@if.uff.br

1

Summary	Aging and Mortality 0000 000000 000000000000000000000000	Evolutionary Theory of Aging 00000 00000●	Bit String Model 0000 00000	Conclusio
Special Cases of	Aging			

Other questions

• Humans have 2 sets of teeths. Elephants have six. What no more? Programmed death?

- Benefitial mutations are difficult.
- Canine longevity: wild animals tend to have both longer times to develop to sexual maturity and longer life spans. Larger dogs have shorter lifespan than the smaller breeds.
- Progeria: individuals usually die by age 14.
- Im summary, is aging a bug or a feature ?

Instituto de Física UFF tjpp@if.uff.br

イロト 人間 トイヨト イヨト

Summary	Aging and Mortality 0000 000000 00000000000000	Evolutionary Theory of Aging 0000 000000	Bit String Model ●○○○ ○○○○○	Conclusion
Definition				

Journal of Statistical Physics, Vol. 78, Nos. 5/6, 1995

A Bit-String Model for Biological Aging

T. J. P. Penna¹

Received September 14, 1994

We present a simple model for biological aging. We study it through computer simulations and fint it to reflect some features of real populations.

KEY WORDS: Aging, Monte Carlo simulations.

Thadeu Penna Complexity in Living Systems <ロト イ 品 ト イ ヨト イ ヨト ヨー つ へ (~ Instituto de Física UFF tjpp@if.uff.br

C		m	ar	67
0	u		ш.	у –

Aging and Mortality 0000 000000 0000000000000000 Evolutionary Theory of Aging

Bit String Model

Conclusion

Definition

- Time is discrete.
- Each individual will be represented by a string of bits
- The string is not the genotype but a temporal reading of it.
- It matters **when** a mutation become active and not if it is present on the genotype.
- There is a limit on the number of active mutations (individuals will die)
- Individuals will reproduce at age *R*, newborns will have the same temporal genotype and additional mutations.

Instituto de Física UFF tjpp@if.uff.br

3

イロト 人間 トイヨト イヨト

S	u	1I	n	r١	7

Evolutionary Theory of Aging

Bit String Model

Conclusion

Definition

An example

・ロト・日本・日本・日本・日本・日本

Instituto de Física UFF tjpp@if.uff.br

C		m	ar	67
0	u		ш.	у –

Evolutionary Theory of Aging

Bit String Model

Conclusion

Definition

An example

▲□▶▲圖▶▲≣▶▲≣▶ ■目 めんの

Instituto de Física UFF tjpp@if.uff.br

C	 	 0.00	
0		ar	γ

Evolutionary Theory of Aging

Bit String Model

Conclusion

Definition

An example

▲ロト▲圖ト▲目ト▲目ト 目 のへの

Instituto de Física UFF tjpp@if.uff.br

C	 	 0.00	
0		ar	γ

Evolutionary Theory of Aging

Bit String Model

Conclusion

Definition

An example

・ロト・日本・日本・日本・日本・日本

Instituto de Física UFF tjpp@if.uff.br

C	 m	ar	

Evolutionary Theory of Aging

Bit String Model

Conclusion

Definition

An example

Thadeu Penna Complexity in Living Systems ▲ロト▲圖ト▲目ト▲目ト 目 のへの

		arv	

Evolutionary Theory of Aging

Bit String Model

Conclusion

Definition

An example

Thadeu Penna Complexity in Living Systems ▲□▶▲□▶▲□▶▲□▶ □ つくで

Summary

Evolutionary Theory of Aging

Bit String Model

Conclusion

Definition

An example

Thadeu Penna Complexity in Living Systems

・ロト・西・・川・・山・・ 一川・ うへの

		arv	

Evolutionary Theory of Aging

Bit String Model

Conclusion

Definition

An example

Thadeu Penna Complexity in Living Systems ▲□▶▲圖▶▲≣▶▲≣▶ ■目 めんの

C	 111	ar	

Evolutionary Theory of Aging

Bit String Model

Conclusion

Definition

An example

Thadeu Penna Complexity in Living Systems ・ロト・日本・モート ヨー うくぐ

C	 	 0.77	
0		arv	¥.

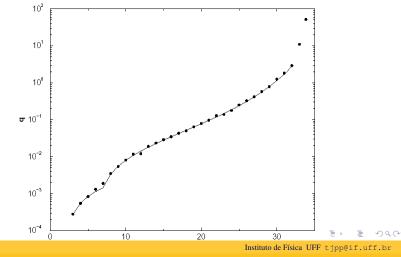
Aging and Mortality 0000 000000 0000000000000000 Evolutionary Theory of Aging

Bit String Model

Conclusion

Definition

- We start with a population with random genotypes.
- We test if the individual survives with a few active mutations
- We test if survives to a food and space limitation
- Can it reproduce ?
- Its age is then increased
- Repeat for many steps

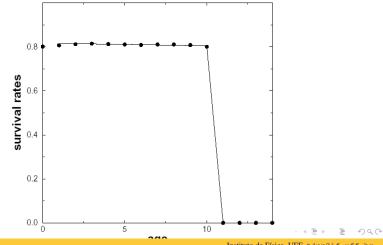

Instituto de Física UFF tjpp@if.uff.br

3

イロト 人間 トイヨト イヨト

Summary	Aging and Mortality	Evolutionary Theory of Aging	Bit String Model	Conclusion
	0000 000000 00000000000	0000	0000 00000	
Results				

Mortality



Complexity in Living Systems

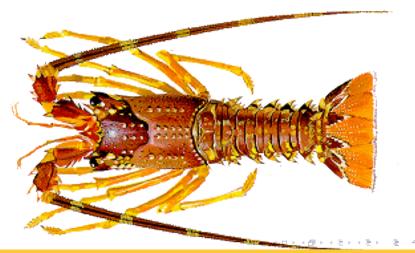
Thadeu Penna

Summary	Aging and Mortality 0000 000000 000000000000	Evolutionary Theory of Aging 0000 000000	Bit String Model ○○○○ ○●○○○	Conclusion
Results				

Salmon

Thadeu Penna Complexity in Living Systems

		ar	


Evolutionary Theory of Aging

Bit String Model

Conclusion

Results

Lobsters

Thadeu Penna Complexity in Living Systems

Summary	Aging and Mortality 0000 000000 00000000000	Evolutionary Theory of Aging	Bit String Model	Conclusion
Results				
Lobste	rs			

• Fertility (cabo-verde "Panulirus laevicaudas"):

$$b(i) \sim 1 - \exp(-0.171 \, i)^{2.86}$$

- Fertility is proportional to its weight
- Only 3 eggs reach maturity age
- Fishing is $\approx 65\%$ of the stock.
- We proposed a new rule for lobster catching: save the older ones

Summary	Aging and Mortality	Evolutionary Theory of Aging	Bit String Model	Conclusion
	0000 000000	0000	0000 00000	
	00000000000			
Results				

Simulation

T.J.P. Penna et al. | Physica A 295 (2001) 31-37

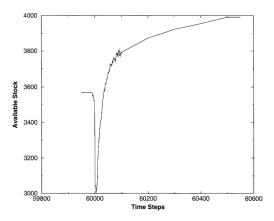


Fig. 1. Stock of lobsters at function of the time ("years"). After 60000 time steps, a maximum age for catching equal to 12 is imposed. The stock decreases at the very first years of regulation but it fastly

ion 《言》《言》 言 のへの stly

Thadeu Penna

Instituto de Física UFF tjpp@if.uff.br

Complexity in Living Systems

Summary	Aging and Mortality 0000 000000 000000000000	Evolutionary Theory of Aging 0000 000000	Bit String Model ○○○○ ○○○○●	Conclusion
Results				
Results				

- Optimal limit: 12 years old (to save 5%)
- The lifespan of the lobsters is increased (22 yrs)
- They are genetically fitter.
- It is hard to convince the fishmen
- Huge lobsters are not the tastier ones.

Thadeu Penna Complexity in Living Systems

Thadeu Penna

<ロト イ 品 ト イ ヨト イ ヨト ヨー つ へ (~ Instituto de Física UFF tjpp@if.uff.br

Summary	Aging and Mortality	Evolutionary Theory of Aging	Bit String Model	Conclusion
	0000 000000 00000000000	0000 000000	0000	

What next?

- The model is extremely simple and easily extensible
- Should be use for any problem where age plays a role.
- 200 papers using it, but
- ... a few analytical ones (Coe and Mao, PRL)
- ... a few papers on predictions and ecological situation
- speciation ?
- why sex ?
- AIDS and therapy
- space reserved for your contribution

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・