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Anyons

The argument that we have used to describe ex-
change symmetry is, in fact, only strictly valid in
three dimensions. In two dimensions, there are fur-
ther possibilities other than fermions and bosons. For
the interested reader, we give a more detailed descrip-
tion in this box.

We begin by noticing that eqn 29.3 allows the so-
lution ψ(r2, r1) = eiθψ(r1, r2), where θ is a phase
factor. Thus exchanging identical particles means
that the wave function acquires a phase θ. Defining
r = r2−r1, the action of exchanging the position co-
ordinates of two particles involves letting this vector
execute some path from r to −r, but avoiding the
origin so that the two particles do not ever occupy
the same position.

Fig. 29.1 Paths in r-space,
for the three-dimensional
case, corresponding to (a)
no exchange of particles
and (b) exchange of parti-
cles.

We therefore can imag-
ine the exchange of parti-
cles as a path in r-space.
Without loss of generality,
we can keep |r| fixed, so
that in the process of ex-
changing the two particles,
they move relative to each
other at a fixed separation.
Thus, for the case of three
dimensions, the path is on
the surface of a sphere in
r-space. Since the two par-
ticles are identical, oppo-
site points on the surface
of the sphere are equiva-
lent and must be identified
(giving r-space the topol-
ogy of, what is known as,
real two-dimensional pro-
jective space). It turns out
that all paths on this sur-
face fall into two classes:

ones which are contractible to a point [and thus cor-
respond to no exchange of particles, yielding θ =
0 to ensure the wavefunction is single-valued; see
Fig. 29.1(a)] and those which are not [and thus cor-
respond to exchange of particles; see Fig. 29.1(b)].
For this latter case we have to assign θ = π, so
that two exchanges correspond to no exchange, i.e.

eiθeiθ = 1, so that θ = π. This argument thus jus-
tifies that the phase factor eiθ = ±1, giving rise to
bosons (eiθ = +1) and fermions (eiθ = −1).

Fig. 29.2 Paths in
r-space, for the two-
dimensional case, corre-
sponding to (a) no ex-
change, (b) a single ex-
change and (c) two ex-
changes of particles.

However, the argument fails
in two dimensions. In the
two-dimensional case, the path
is on a circle in r-space in
which opposite points on the
circle are equivalent and are
identified. In this case, the
paths in r-space can wind
round the origin an inte-
ger number of times. This
means that two successive ex-
changes of the particles [as
shown in Fig. 29.2(c)] are
not topologically equivalent to
zero exchanges [if performed
by winding round the ori-
gin in the same direction, as
shown in Fig. 29.2(a)] and
thus the phase θ can take any
value. (In this case, r-space
has the topology of real one-
dimensional projective space,
which is the same as that of
a circle.) The resulting par-
ticles have more complicated
statistical properties than ei-

ther bosons or fermions and are called anyons (be-
cause θ can take ‘any’ value). Since θ/π is no longer
forced to be ±1, and can take any fractional value
in between, anyons can have fractional statistics.
The crucial distinction between r-space in two and
three dimensions is that the removal of the origin in
two-dimensional space makes the space multiply con-
nected (allowing paths which wind around the ori-
gin), whereas three-dimensional space remains singly
connected (and a path which tries to wind round the
origin can be deformed into one which does not).

We live in a three-dimensional world, so is any of
this relevant? In fact, anyons turn out to be impor-
tant in the fractional quantum Hall effect, which
occurs in certain two-dimensional electron systems
under high magnetic field. For more details concern-
ing anyons, see the further reading.


