Curso de Física Estatística - Pós-Graduação

 2^a Lista - 1 Sem 16

Justifique e discuta TODAS as suas respostas. Após obter cada resposta cheque se as unidades estão corretas, se os casos limites são físicos e discuta brevemente o significado físico da sua resposta.

Nos problemas abaixo considere como dada a expressão para o volume acessível no espaço de fase para um gás ideal com N partículas, com energia total entre $EeE + \delta E$, contido em um volume V:

$$\Omega(E, V, N) = \frac{1}{2N!} C_{3N} V^{N} (2m)^{3N/2} E^{(3N/2-1)} \delta E,$$

onde $C_{3N} = N^{-\frac{3N}{2}} b^N$, com b constante e δE constante (muito menor que E).

- 1. Considere um gás ideal de N partículas (N >> 1). Usando a definição de entropia total S e a expressão para Ω , e identificando a energia interna U com E, obtenha U em função da temperatura.
- 2. Considere dois gases ideais monoatômicos clássicos, com N_1 e N_2 partículas, respectivamente, inicialmente separados por uma parede adiabática, fixa e impermeável. O sistema total está isolado, de modo que a energia total é fixa: $E_0 = E_1 + E_2$. Se a parede é substituída por uma parede diatérmica, fixa e impermeável, o sistema atingirá um novo estado de equiíbrio, o gás 1 ficará com a nova energia E'_1 e o gás 2, com E'_2 .
 - a) Escreva a expressão para o volume acessível ao sistema composto no espaço de fase, $\Omega(E_0, E_1')$, quando o gás 1 está com energia E_1' .
 - b) Sendo a probabilidade do gás 1 ter energia E_1' igual a $P(E_1') = c\Omega(E_0, E_1')$, maximize $lnP(E_1')$ em relação a E_1' e encontre a condição de máximo em termos das energias mais prováveis \tilde{E}_1 e \tilde{E}_2 e dos números de partículas.
 - c) Identificando os valores mais prováveis da energia com a energia interna termodinâmica, escreva de novo a condição do item b), obtendo a condição usual de equilíbrio térmico.
 - d) Mostre que a flutuação da energia por partícula varia com $1/\sqrt{N}$ e portanto tende a zero para sistemas macroscópicos, onde $N \to \infty$, justificando assim a identificação dos valores mais prováveis com as variáveis macroscópicas no equilíbrio termodinâmico.
- 3. Considere um sistema isolado, de volume 2V, composto por dois subsistemas , cada um ocupando um volume V, separados por uma partição. Cada subsistema é um gás ideal de N partículas, à mesma temperatura T, com energia $E=3/2Nk_BT$.
 - (a) Calcule a entropia total S_i de cada gás (i = 1, 2).
 - (b) Se os dois gases são o mesmo gás, a entropia S do sistema composto deve ser igual a entropia do sistema composto sem a partição (um gás ideal de 2N partículas à temperatura T em um volume 2V). Calcule esta entropia.
 - (c) A entropia do sistema composto também deve ser dada por $S = S_1 + S_2$ (aditividade da entropia). Calcule $S (S_1 + S_2)$ (sendo os gases iguais) e mostre que o resultado é $2Nk_Bln2$ (não dá zero como deveria). Este é o paradoxo de Gibbs. Como se pode explicar isto?
- 4. Considere dois sistemas isolados de spins 1/2 não interagentes. Um deles tem 4 spins $(N_A = 4)$ e o outro tem 10 $(N_B = 4)$.
 - a) Qual o número total de microestados de cada sistema? E do sistema composto A + B?

Considere agora que cada sistema está em um campo magnético B e de alguma maneira fixamos a energia de cada um deles, sendo $E_A = -2\mu B$ e $E_B = -2\mu B$. A hamiltoniana fica $H = -\mu B \sum_i \sigma_i$ com $\sigma_i = \pm 1$

- b) Nesse caso onde a energia de cada sistema é fixa, qual o número de microestados total do sistema composto A + B. Compare com o obtido no item a) e explique.
- c) Comente brevemente sobre a importância da hipótese de que os sistemas não interagem na resposta do número de microestado total do sistema obtida no item anterior.
- d) Se colocamos os dois sistemas em contato e permitimos a troca de energia, qual a probabilidade do sistema A continuar tendo energia $E_A = -2\mu B$
- e) Qual o valor mais provável de E_A e E_B . Qual o significado físico desse valor mais provável
- f) O que ocorre com as flutuações na energia quando aumentarmos o número de partículas em cada sistema?
- g) Qual o macroestado mais provável para o sistema composto? Explique.
- 5. (Salinas 4.2) No modelo do sólido de Einstein, poderíamos introduzir uma coordenada de volume supondo, de maneira fenomenológica, que a frequência fundamental ω seja uma função de v-V/N da forma

$$\omega = \omega(v) = \omega_0 - A \ln\left(\frac{v}{v_0}\right),$$

onde ω_0 , A e v_0 são constantes positivas. Obtenha expressões para o coeficiente de dilatação e a compressibilidade isotérmica desse modelo.

6. (Salinas 4.4) O número total de estados microscópicos acessíveis ao gás de Boltzmann, com energia E e número de partículas N, pode ser escrito na forma

$$\Omega(E,N) = \sum_{N_1,N_2,\dots} \frac{N!}{N_1!N_2!\dots}$$

com as restrições $\sum_j N_j = N$ e $\sum_j \epsilon_j N_j = E$. Escreva uma expressão formal para a entropia, no limite termodinâmico, em termos da distribuição de valores dos números de ocupação no equilíbrio. Mostre que a entropia depende da temperatura de acordo com um termo do tipo $-K_BT \ln T$.

7. (Salinas 4.5) Considere um gás de rede constituído por N partículas distribuídas em V células (com $N \leq V$). Suponha que cada célula possa estar vazia ou ocupada por uma única partícula. O número de estados microscópicos do sistema será dado por:

$$\Omega(E, N) = \frac{V!}{N!(V - N)!}$$

- a) Obtenha a entropia por partícula s(v), onde v é o volume médio por partícula, dado por v = V/N.
- b) A partir da equação fundamental determinada no item anterior, obtenha a equação de estado para p/T.
- c) Escreva a equação do item anterior em termos do número médio de partículas por unidade de volume $\rho=1/v$. Faça uma expansão em torno de $\rho=0$ (baixa densidade), calculando seus três primeiros termos não nulos. Esta é a expansão virial e os coeficientes dessa expansão são os coeficientes viriais do gás. Mostre que truncando a expansão em primeira ordem obtemos a lei de Boyle para gases ideais.
- 8. Considere um sistema de N partículas onde cada uma pode ter energia 0 ou Δ .
 - a) Mostre que o número de microestados compatíveis com o sistema ter energia total $E=r\Delta$ (r é um inteiro) é dado por

$$\Omega(E, N) = \frac{N!}{r!(N-r)!}.$$

b) Agora retire um pequena quantidade de energia $s\Delta$ do sistema, com $s\ll r$. Mostre que

$$\Omega(E - \epsilon, N) \approx \Omega(E, N) \frac{r^s}{(N - r)^s},$$

c) Mostre que a temperatura T do sistema é dada por

$$\frac{1}{K_B T} = \frac{1}{\Delta} \ln \left(\frac{N - r}{r} \right)$$

- d) Esboce o gráfico de K_BT em função de
 rpara rentre 0 e ${\cal N}$ e explique o resultado
- e) O que ocorre quando um sistema com temperatuara negativa pode trocar calor com um sistema com temperatura positiva?